Fast and Scalable 2D Convolutions and Cross-correlations for Processing Image Databases and Videos on CPUs

The dominant use of Convolutional Neural Networks (CNNs) in several image and video analysis tasks necessitates a careful re-evaluation of the underlying software libraries for computing them for large-scale image and video databases. We focus our attention on developing methods that can be applied...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE Southwest Symposium on Image Analysis and Interpretation) s. 70 - 73
Hlavní autori: Carranza, Cesar, Llamocca, Daniel, Pattichis, Marios
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.03.2020
Predmet:
ISSN:2473-3598
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The dominant use of Convolutional Neural Networks (CNNs) in several image and video analysis tasks necessitates a careful re-evaluation of the underlying software libraries for computing them for large-scale image and video databases. We focus our attention on developing methods that can be applied to large image databases or videos of large image sizes.We develop a method that maximizes throughput through the use of vector-based memory I/O and optimized 2D FFT libraries that run on all available physical cores. We also show how to decompose arbitrarily large images into smaller, optimal blocks that can be effectively processed through the use of overlap-and- add. Our approach outperforms Tensorflow for 5 × 5 kernels and significantly outperforms Tensorflow for 11 × 11 kernels.
ISSN:2473-3598
DOI:10.1109/SSIAI49293.2020.9094602