Machine learning based SpO2 prediction from PPG signal's characteristics features

Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a patient/victim until arrival to a medical facility, is essential in emergency situations. Using a SmartPatch device attached to a victim's che...

Full description

Saved in:
Bibliographic Details
Published in:2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA) pp. 1 - 6
Main Authors: Koteska, Bojana, Mitrova, Hristina, Bogdanova, Ana Madevska, Lehocki, Fedor
Format: Conference Proceeding
Language:English
Published: IEEE 22.06.2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a patient/victim until arrival to a medical facility, is essential in emergency situations. Using a SmartPatch device attached to a victim's chest that contains a Photoplethysmogram Waveforms (PPG) sensor, one can obtain the SpO2 parameter. Our interest in the process of the SmartPatch prototype development is to investigate the monitoring of a blood oxygen saturation level by using the embedded PPG sensor. We explore acquiring the Sp02 by extracting the set of features from the PPG signal utilizing two Python toolkits, HeartPy and Neurokit, in order to model the Machine learning predictors, using multiple regressors. The PPG signal is preprocessed by various filtering techniques to remove low/high frequency noise. The model was trained and tested using the clinical data collected from 52 subjects with SpO2 levels varying from 83 - 100%. The best experimental results - MAE (1.45), MSE (3.85), RMSE (1.96) and RMSLE (0.02) scores are achieved with the Random Forest regressor in the experiment with 7 features extracted from the both toolkits.
AbstractList Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a patient/victim until arrival to a medical facility, is essential in emergency situations. Using a SmartPatch device attached to a victim's chest that contains a Photoplethysmogram Waveforms (PPG) sensor, one can obtain the SpO2 parameter. Our interest in the process of the SmartPatch prototype development is to investigate the monitoring of a blood oxygen saturation level by using the embedded PPG sensor. We explore acquiring the Sp02 by extracting the set of features from the PPG signal utilizing two Python toolkits, HeartPy and Neurokit, in order to model the Machine learning predictors, using multiple regressors. The PPG signal is preprocessed by various filtering techniques to remove low/high frequency noise. The model was trained and tested using the clinical data collected from 52 subjects with SpO2 levels varying from 83 - 100%. The best experimental results - MAE (1.45), MSE (3.85), RMSE (1.96) and RMSLE (0.02) scores are achieved with the Random Forest regressor in the experiment with 7 features extracted from the both toolkits.
Author Koteska, Bojana
Lehocki, Fedor
Bogdanova, Ana Madevska
Mitrova, Hristina
Author_xml – sequence: 1
  givenname: Bojana
  surname: Koteska
  fullname: Koteska, Bojana
  email: bojana.koteska@finki.ukim.mk
  organization: Ss. Cyril and Methodius University,Faculty of Computer Science and Engineering,Skopje,North Macedonia
– sequence: 2
  givenname: Hristina
  surname: Mitrova
  fullname: Mitrova, Hristina
  email: hristina.mitrova@students.finki.ukim.mk
  organization: Ss. Cyril and Methodius University,Faculty of Computer Science and Engineering,Skopje,North Macedonia
– sequence: 3
  givenname: Ana Madevska
  surname: Bogdanova
  fullname: Bogdanova, Ana Madevska
  email: ana.madevska.bogdanova@students.finki.ukim.mk
  organization: Ss. Cyril and Methodius University,Faculty of Computer Science and Engineering,Skopje,North Macedonia
– sequence: 4
  givenname: Fedor
  surname: Lehocki
  fullname: Lehocki, Fedor
  email: fedor.lehocki@stuba.sk
  organization: Institute of Measurement Science, Slovak Academy of Sciences,Bratislava,Slovakia
BookMark eNotj0FLwzAYhiPoQed-gQdz87TapEma7ziGTmFlE_U8viZft0CXlqQe_PcO3OmFh4cH3jt2HYdIjD2KshCihOeGGlpqBaAKWUpZgNVGgb1ic6itMEYrKwHsLfto0B1DJN4TphjigbeYyfPPcSv5mMgHN4Uh8i4NJ77brXkOh4j9U-buiAndRCnkKbjMO8LpJ1G-Zzcd9pnml52x79eXr9XbYrNdv6-Wm0WQZTUtFHlondd1K7Ry1nmnjBFSa6o6aA1Ya-iMbCdLrFtACU4gnVVS4Cvvqxl7-O8GItqPKZww_e4vR6s_TqtO8w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MeMeA54994.2022.9856498
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665482998
1665482990
EndPage 6
ExternalDocumentID 9856498
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i203t-4ed9bcd57b154c8cdc4661255e3f9b69886ec468f20a7b9a29c1ae54ce49d3dd3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861225100092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:38:10 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-4ed9bcd57b154c8cdc4661255e3f9b69886ec468f20a7b9a29c1ae54ce49d3dd3
PageCount 6
ParticipantIDs ieee_primary_9856498
PublicationCentury 2000
PublicationDate 2022-June-22
PublicationDateYYYYMMDD 2022-06-22
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
PublicationTitleAbbrev MEMEA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.826747
Snippet Continuous monitoring of blood oxygen saturation level (SpO2) during the second triage in the high casualty event and determining the hemostability of a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Decision making
Feature extraction
Filtering
machine learning
Neural networks
oxygen saturation
photoplethysmogram data
Pipelines
Predictive models
Prototypes
signal processing
Title Machine learning based SpO2 prediction from PPG signal's characteristics features
URI https://ieeexplore.ieee.org/document/9856498
WOSCitedRecordID wos000861225100092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGTSiu-yUHw4rZJNtlNjiI-Drau-KC3sklmpSBt6cPfb5IulYIXb2EIhHwhzOubGYBLoSSqkB9EzTDxGsomxmQukZI7LfJK8hjQ_3jKBwM1HOqiAdebWhhEjOQz7IZlzOW7qV2FUFlPK5kJrZrQzPNsXatVU7YY1b0-9vEmuDshVMJ5t969NTYlao37vf-dtw-d3_I7UmwUywE0cNKGl36kPSKp5zx8kqCAHHmdPXMym4d8S8CYhHoRUhQPJDAzyq-rBbHbPZlJhbGZ56ID7_d3b7ePST0PIRlzmi4TgU4b62RuvN1jlXVWZMFAkZhW2mRaqQy9SFWclrnRJdeWlei3otAudS49hNZkOsEjIJRV0jhKrffmhE5ZySp_WUaN8Z8YFR5DO8Axmq1bXoxqJE7-Fp_CbkA8MKg4P4PWcr7Cc9ix38vxYn4R3-kHMWaWGg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKehJZRO_zUHwYrc0TdrkKOKcuM6KU3YbTfIqA9lGt_n323RlMvDiLTwCIb8Q3tfvvQdwzaVA6fKDqHz0Cg1lPK1D6wnBrOJRJlgZ0P_oRf2-HA5VUoPbdS0MIpbkM2y5ZZnLt1OzdKGytpIi5EpuwbbgnNFVtVZF2vKpascY451zeFywhLFWtX9jcEqpNzr7_zvxAJq_BXgkWauWQ6jhpAGvcUl8RFJNevgkTgVZ8jZ7YWSWu4yLQ5m4ihGSJI_EcTPSr5s5MZtdmUmGZTvPeRPeOw-D-65XTUTwxowGC4-jVdpYEenC8jHSWMNDZ6IIDDKlQyVliIVIZoymkVYpU8ZPsdiKXNnA2uAI6pPpBI-BUD8T2lJqCn-Oq8BP_ay4rE-1Lr4xSjyBhoNjNFs1vRhVSJz-Lb6C3e4g7o16T_3nM9hz6Ds-FWPnUF_kS7yAHfO9GM_zy_LNfgAuTplh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Symposium+on+Medical+Measurements+and+Applications+%28MeMeA%29&rft.atitle=Machine+learning+based+SpO2+prediction+from+PPG+signal%27s+characteristics+features&rft.au=Koteska%2C+Bojana&rft.au=Mitrova%2C+Hristina&rft.au=Bogdanova%2C+Ana+Madevska&rft.au=Lehocki%2C+Fedor&rft.date=2022-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMeMeA54994.2022.9856498&rft.externalDocID=9856498