Point Cloud Geometry Scalable Coding With a Single End-to-End Deep Learning Model

Point clouds are gaining importance as the format to represent complex 3D objects and scenes, offering high user immersion and interaction, although at the cost of requiring massive data. Scalable coding is an important feature for point cloud coding, especially for real-time applications, where the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings - International Conference on Image Processing s. 3354 - 3358
Hlavní autori: Guarda, Andre F. R., Rodrigues, Nuno M. M., Pereira, Fernando
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2020
Predmet:
ISSN:2381-8549
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Point clouds are gaining importance as the format to represent complex 3D objects and scenes, offering high user immersion and interaction, although at the cost of requiring massive data. Scalable coding is an important feature for point cloud coding, especially for real-time applications, where the fast and bitrate efficient access to a decoded point cloud is important; however, this issue is still rather unexplored in the literature. With the rise of deep learning methods as a promising solution for efficient coding, this paper proposes the first deep learning-based point cloud geometry scalable coding solution. Experimental results show that the proposed scalable coding solution consistently outperforms the MPEG standard for static point cloud geometry coding. In this way, a new research path is open for point cloud scalable coding technology.
ISSN:2381-8549
DOI:10.1109/ICIP40778.2020.9191021