The deepest repetition-free decompositions of nonsingular functions of finite-valued logics
A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be obtained from the first one in a finite number of steps: isotopy change, commutation change and associative change. The main result: every two deepe...
Uloženo v:
| Vydáno v: | Proceedings / International Symposium on Multiple-Valued Logic s. 279 - 282 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
1996
|
| Témata: | |
| ISBN: | 9780818673924, 0818673923 |
| ISSN: | 0195-623X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be obtained from the first one in a finite number of steps: isotopy change, commutation change and associative change. The main result: every two deepest repetition-free decompositions of a nonsingular function of a finite-valued logics almost coincide. As a corollary we have the corresponding Kuznetaov's results for Boolean functions and Sosinsky's result for functions of three-valued logics. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
| ISBN: | 9780818673924 0818673923 |
| ISSN: | 0195-623X |
| DOI: | 10.1109/ISMVL.1996.508368 |

