The deepest repetition-free decompositions of nonsingular functions of finite-valued logics

A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be obtained from the first one in a finite number of steps: isotopy change, commutation change and associative change. The main result: every two deepe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / International Symposium on Multiple-Valued Logic S. 279 - 282
1. Verfasser: Sokhatsky, F.
Format: Tagungsbericht Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 1996
Schlagworte:
ISBN:9780818673924, 0818673923
ISSN:0195-623X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be obtained from the first one in a finite number of steps: isotopy change, commutation change and associative change. The main result: every two deepest repetition-free decompositions of a nonsingular function of a finite-valued logics almost coincide. As a corollary we have the corresponding Kuznetaov's results for Boolean functions and Sosinsky's result for functions of three-valued logics.
Bibliographie:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISBN:9780818673924
0818673923
ISSN:0195-623X
DOI:10.1109/ISMVL.1996.508368