The deepest repetition-free decompositions of nonsingular functions of finite-valued logics

A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be obtained from the first one in a finite number of steps: isotopy change, commutation change and associative change. The main result: every two deepe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / International Symposium on Multiple-Valued Logic s. 279 - 282
Hlavní autor: Sokhatsky, F.
Médium: Konferenční příspěvek Journal Article
Jazyk:angličtina
Vydáno: IEEE 1996
Témata:
ISBN:9780818673924, 0818673923
ISSN:0195-623X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be obtained from the first one in a finite number of steps: isotopy change, commutation change and associative change. The main result: every two deepest repetition-free decompositions of a nonsingular function of a finite-valued logics almost coincide. As a corollary we have the corresponding Kuznetaov's results for Boolean functions and Sosinsky's result for functions of three-valued logics.
Bibliografie:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISBN:9780818673924
0818673923
ISSN:0195-623X
DOI:10.1109/ISMVL.1996.508368