The deepest repetition-free decompositions of nonsingular functions of finite-valued logics

A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be obtained from the first one in a finite number of steps: isotopy change, commutation change and associative change. The main result: every two deepe...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings / International Symposium on Multiple-Valued Logic pp. 279 - 282
Main Author: Sokhatsky, F.
Format: Conference Proceeding Journal Article
Language:English
Published: IEEE 1996
Subjects:
ISBN:9780818673924, 0818673923
ISSN:0195-623X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be obtained from the first one in a finite number of steps: isotopy change, commutation change and associative change. The main result: every two deepest repetition-free decompositions of a nonsingular function of a finite-valued logics almost coincide. As a corollary we have the corresponding Kuznetaov's results for Boolean functions and Sosinsky's result for functions of three-valued logics.
AbstractList A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be obtained from the first one in a finite number of steps: isotopy change, commutation change and associative change. The main result: every two deepest repetition-free decompositions of a nonsingular function of a finite-valued logics almost coincide. As a corollary we have the corresponding Kuznetsov's results for Boolean functions and Sosinsky's result for functions of three-valued logics.
A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be obtained from the first one in a finite number of steps: isotopy change, commutation change and associative change. The main result: every two deepest repetition-free decompositions of a nonsingular function of a finite-valued logics almost coincide. As a corollary we have the corresponding Kuznetaov's results for Boolean functions and Sosinsky's result for functions of three-valued logics.
Author Sokhatsky, F.
Author_xml – sequence: 1
  givenname: F.
  surname: Sokhatsky
  fullname: Sokhatsky, F.
  organization: Dept. of Algebra, Pedagogical Inst., Vinnyteia, Ukraine
BookMark eNo9kEtLxDAUhQOO4Mw4P0BXXblrzatpspTBx0DFhaMILkra3oyRTlKbVvDfGx1xcw9893Av5yzQzHkHCJ0RnBGC1eXm8f65zIhSIsuxZEIeoZUqJJZEioIpymdojonKU0HZywlahPCOMcW0wHP0un2DpAXoIYzJEGW0o_UuNQP88Mbvex9-UUi8SeLnYN1u6vSQmMk1_wtjnR0h_dTdBG3S-Z1twik6NroLsPrTJXq6ud6u79Ly4XazvipTSzEbU14U0igttOKcyroFSU0DkrVYUDAgaq1FLiWpa95GYARX1BSmBqyY4HEs0cXhbj_4jykGqfY2NNB12oGfQkWZiLVQEY3nB6MFgKof7F4PX9WhM_YNxpZkWg
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/ISMVL.1996.508368
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 282
ExternalDocumentID 508368
GroupedDBID --Z
-~X
23M
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABDPE
ABLEC
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RNS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-i203t-4778f9a6a94428bde82fce83d062efe6baa65881bb4d2eff6492f7fbe09364093
IEDL.DBID RIE
ISBN 9780818673924
0818673923
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=508368&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0195-623X
IngestDate Fri Sep 05 06:02:35 EDT 2025
Tue Aug 26 17:13:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i203t-4778f9a6a94428bde82fce83d062efe6baa65881bb4d2eff6492f7fbe09364093
Notes SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
PQID 23608326
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_23608326
ieee_primary_508368
PublicationCentury 1900
PublicationDate 19960000
19960101
PublicationDateYYYYMMDD 1996-01-01
PublicationDate_xml – year: 1996
  text: 19960000
PublicationDecade 1990
PublicationTitle Proceedings / International Symposium on Multiple-Valued Logic
PublicationTitleAbbrev ISMVL
PublicationYear 1996
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020270
ssj0000445515
Score 1.4001697
Snippet A superposition is called repetition-free if every variable appears in it at most once. Two terms are said to almost coincide if the second term can be...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 279
SubjectTerms Algebra
Boolean functions
Logic functions
Title The deepest repetition-free decompositions of nonsingular functions of finite-valued logics
URI https://ieeexplore.ieee.org/document/508368
https://www.proquest.com/docview/23608326
WOSCitedRecordID wos508368&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLYoYoCFq4ibDKwuxnZ8zAgEEiAkDlViqJz4PalLWyUtvx_bORhgYUriJLL1_OR3f4-QyxIt6kLlNPfSUukcUuOuS8pzgSg1B4FFajahn5_NeGxfWpztVAsDACn5DEbxNsXy_bxcRVfZVYQuV2ZABlqrplSrd6cwKfPU1Lu1tYK1xbpWhEHCjxP0YwRvC_qAaIF3umfZRjuvmb16eH36eIwlfGrUzNZ2Xfl1VCf5c7f9r5XvkOFPHV_20kuoXbIGsz2y9dQjtdb75DPwSeYBFmHKrAqXBryIYgVxPGacd2ld2RyzWcynncX29VUWRWL_AqdReaUROxx8lg7Uekje727fbu5p23CBTjkTSyq1NmidclYGq6TwYDiWYIRnigOCKpwLCktQdAvpwwAqaTlqLIBZoYKhKA7IelgHHJLMKscK5jwyY6UGbwruwubb3GAptPFHZC9SabJoMDUmDYGOyEVH5Ulg8xi7cDOYr-oJFyp8wdXxn_-dkM0mmzq6Rk7J-rJawRnZKL-W07o6T5zyDdc-u3Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4ScACFBBvMrC6Nbbj2DMCtaKtkCioEkPkxHdSlxalLb8f20nLAAtTEieRrfPJd2fffR8hdyUazAqV0tRJQ6W1SLW9LylPBaLMOAgsItlENhzq8di8NDjbsRYGAGLyGbTDbTzLd7NyGbbKOgG6XOlNsh2Is5pirfWGCpMyjbTeTbTl4y22IiP0Nn4cwR8DfJv3CEQDvbN6ls155z0znd7r4L0fivhUu-6v4V35tVhHC_R08K-xH5KTn0q-5GVto47IBkxbZH-wxmqdH5MPrymJA_j0XSaVv9TwRRQrCO0h53yV2JXMMJmGjNppILCvkmAU1y9wEtxXGtDDwSVxSZ2fkLenx9FDlzaUC3TCmVhQmWUajVXWSB-XFA40xxK0cExxQFCFtd5l8a5uIZ1vQCUNxwwLYEYoHyqKU7LlxwFnJDHKsoJZh0wbmYHTBbd--k2qsRSZduekFaSUf9aoGnktoHNyu5Jy7hU9nF7YKcyW85wL5b_g6uLP_27Jbnc06Of93vD5kuzVudVho-SKbC2qJVyTnfJrMZlXN1FrvgHJg76_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+26th+IEEE+International+Symposium+on+Multiple-Valued+Logic+%28ISMVL%2796%29&rft.atitle=The+deepest+repetition-free+decompositions+of+nonsingular+functions+of+finite-valued+logics&rft.au=Sokhatsky%2C+F.&rft.date=1996-01-01&rft.pub=IEEE&rft.isbn=9780818673924&rft.issn=0195-623X&rft.spage=279&rft.epage=282&rft_id=info:doi/10.1109%2FISMVL.1996.508368&rft.externalDocID=508368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-623X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-623X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-623X&client=summon