Development of Natural Language Processing Algorithm for Dental Charting
Purpose: The purpose was to develop a natural language processing algorithm, which will input data from oral examination transcripts to a structured database. Methods: Four case vignettes were produced with varying degree of soft tissue pathology, caries, existing restorations and occlusion relation...
Uložené v:
| Vydané v: | 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI) s. 403 - 404 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.08.2020
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Purpose: The purpose was to develop a natural language processing algorithm, which will input data from oral examination transcripts to a structured database. Methods: Four case vignettes were produced with varying degree of soft tissue pathology, caries, existing restorations and occlusion relationships. Volunteers were instructed to perform simulated oral examinations based on the case vignettes, using natural language as in clinical settings. Twenty simulated oral examinations were collected and transcribed to develop a natural language processing algorithm in JAVA. The algorithm was reviewed and refined. Four additional simulated oral examinations were performed and transcribed as validation. Volunteers were asked to read the validation transcripts and fill in paper dental charts accordingly. The accuracy of the human volunteers and the algorithm were calculated. Results: After improvements, the recall rate of algorithm extracting data from transcripts was 99.0% and the precision was 97.8%. For the validation transcripts, human subjects had a 100% recall and precision rate. The mean recall and precision of algorithm processing the validation transcripts were 98.4% and 98.3% respectively. There was no statistic difference between human and the algorithm. Conclusion: natural language processing algorithm performs comparably with humans. The natural language processing algorithm potentially serves as a starting point to implement speech recognition for a voice-activated automatic dental charting system. |
|---|---|
| DOI: | 10.1109/IRI49571.2020.00066 |