Recent Research and Applications in Variational Autoencoders for Industrial Prognosis and Health Management: A Survey
Whether in the industrial, medical, or real-world domains, more and more data are being collected. The common particularity of all these application domains is that a great part of this data is mostly unlabeled. Thus, designing a learning model with a minimum of labeled data represents a major chall...
Saved in:
| Published in: | Prognostics and System Health Management Conference pp. 193 - 203 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.05.2022
|
| Subjects: | |
| ISSN: | 2166-5656 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Whether in the industrial, medical, or real-world domains, more and more data are being collected. The common particularity of all these application domains is that a great part of this data is mostly unlabeled. Thus, designing a learning model with a minimum of labeled data represents a major challenge in the coming years. A particular emphasis has recently been put on unsupervised learning methods based on the idea of autoencoding. The objective of these methods is twofold: to reduce the dimensionality of the input space and to reconstruct the original observation from this lower dimensional representation space. The variational form of these autoencoders, called the Variational Autoencoders (VAEs), is particularly successful in almost all application areas. This enthusiasm comes from the fact that VAEs allow to take advantage of the theoretical foundations of the Variational Bayesian methods and the learning capabilities of artificial neural networks. This review paper gives to the PHM community a synthesis of the latest publications in the PHM domain using the VAEs related to four topics: 1) Data-Driven Soft Sensors for missing values and data outliers, 2) reconstruction error for fault detection, 3) resampling approach for imbalanced data generation and minority class and 4) the variational embedding as PHM preprocessing pipelines and data transformations. After a review of the theoretical foundations and some practical tricks to succeed the implementation of the VAEs in industrial applications, the four main topics used to exploit the VAEs in the PHM domain are detailed. Finally, a global view of the research done at the research institute of Hydro-Québec regarding the diagnosis and failure detection of hydro-generators with VAEs are presented. |
|---|---|
| AbstractList | Whether in the industrial, medical, or real-world domains, more and more data are being collected. The common particularity of all these application domains is that a great part of this data is mostly unlabeled. Thus, designing a learning model with a minimum of labeled data represents a major challenge in the coming years. A particular emphasis has recently been put on unsupervised learning methods based on the idea of autoencoding. The objective of these methods is twofold: to reduce the dimensionality of the input space and to reconstruct the original observation from this lower dimensional representation space. The variational form of these autoencoders, called the Variational Autoencoders (VAEs), is particularly successful in almost all application areas. This enthusiasm comes from the fact that VAEs allow to take advantage of the theoretical foundations of the Variational Bayesian methods and the learning capabilities of artificial neural networks. This review paper gives to the PHM community a synthesis of the latest publications in the PHM domain using the VAEs related to four topics: 1) Data-Driven Soft Sensors for missing values and data outliers, 2) reconstruction error for fault detection, 3) resampling approach for imbalanced data generation and minority class and 4) the variational embedding as PHM preprocessing pipelines and data transformations. After a review of the theoretical foundations and some practical tricks to succeed the implementation of the VAEs in industrial applications, the four main topics used to exploit the VAEs in the PHM domain are detailed. Finally, a global view of the research done at the research institute of Hydro-Québec regarding the diagnosis and failure detection of hydro-generators with VAEs are presented. |
| Author | Zemouri, Ryad Levesque, Melanie Lafleur, Francois Boucher, Etienne Kirouac, Mathieu Bernier, Simon Merkhouf, Arezki |
| Author_xml | – sequence: 1 givenname: Ryad surname: Zemouri fullname: Zemouri, Ryad email: zemouri.ryad@hydroquebec.com organization: Centre de Recherche d'Hydro-Québec (CRHQ),Varennes,Canada,J3X1S1 – sequence: 2 givenname: Melanie surname: Levesque fullname: Levesque, Melanie organization: Centre de Recherche d'Hydro-Québec (CRHQ),Varennes,Canada,J3X1S1 – sequence: 3 givenname: Etienne surname: Boucher fullname: Boucher, Etienne email: etienne.boucher.2@umontreal.ca organization: Université de Montréal-MILA – sequence: 4 givenname: Mathieu surname: Kirouac fullname: Kirouac, Mathieu organization: Centre de Recherche d'Hydro-Québec (CRHQ),Varennes,Canada,J3X1S1 – sequence: 5 givenname: Francois surname: Lafleur fullname: Lafleur, Francois organization: Centre de Recherche d'Hydro-Québec (CRHQ),Varennes,Canada,J3X1S1 – sequence: 6 givenname: Simon surname: Bernier fullname: Bernier, Simon organization: Centre de Recherche d'Hydro-Québec (CRHQ),Varennes,Canada,J3X1S1 – sequence: 7 givenname: Arezki surname: Merkhouf fullname: Merkhouf, Arezki organization: Centre de Recherche d'Hydro-Québec (CRHQ),Varennes,Canada,J3X1S1 |
| BookMark | eNotj01PAjEYhKvRREF-gZeevC12-7Vbb4SokEAk-BFv5N22CzVLS9pdE_69K3qazOTJTGaALnzwFqG7nIzznKj71WxJCaXZIngTvKBc8PFvMCaEcHqGBrmUghdK8M9zdE17lwkp5BUapfTVM6QoFKfiGnVrq61v8domC1HvMHiDJ4dD4zS0LviEnccfEN3JQYMnXRus18HYmHAdIp5706W2Bxq8imHrQ3Lp1DKz0LQ7vAQPW7vvRx7wBL928dseb9BlDU2yo38dovenx7fpLFu8PM-nk0XmKGFtxupCE4A651V_oS6JJpJJCbIWlVVSVcKIXDOA3DBTcKVLqKQthSIlLStm2BDd_vU6a-3mEN0e4nGjSlL299kPGMZi1A |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/PHM2022-London52454.2022.00042 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 166547954X 9781665479547 |
| EISSN | 2166-5656 |
| EndPage | 203 |
| ExternalDocumentID | 9808794 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i203t-3f7c0aaf14b216f80c06366a6f5be969b5d51c3aa1d3d749c8ab6e8590828b3d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000945467800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:23:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-3f7c0aaf14b216f80c06366a6f5be969b5d51c3aa1d3d749c8ab6e8590828b3d3 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9808794 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May |
| PublicationDecade | 2020 |
| PublicationTitle | Prognostics and System Health Management Conference |
| PublicationTitleAbbrev | PHM-LONDON |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000779425 |
| Score | 1.9146467 |
| Snippet | Whether in the industrial, medical, or real-world domains, more and more data are being collected. The common particularity of all these application domains is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 193 |
| SubjectTerms | Deep learning Prognosis and Health Management Variational Autoencoders |
| Title | Recent Research and Applications in Variational Autoencoders for Industrial Prognosis and Health Management: A Survey |
| URI | https://ieeexplore.ieee.org/document/9808794 |
| WOSCitedRecordID | wos000945467800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MIaIXPzbxmxzEk3Vp0qSptyGOHXQM1LHbyFehl062duB_b5rWbYIXbyEhSUlC3uvL7_1-ALck0tpQbQLFuAoijkUgtQyDWDnjb1KVpl6-bfISj0ZiOk3GLbhf58JYaz34zD5URf-Wb-a6rEJlvURg4c7PDuzEMa9ztdbxFBy7FsL24K6h0eyNh6-kwqrXuhiMRD6GQmqCTvJLTcUbk8Hh_z7jCLqbrDw0XtubY2jZ_AQOtggFO1A6L9D1RT94OiRzg_pbb9Qoy9HE_R43IUDUL4t5RWVZwZmR81_RRsqjmqtC4WVLP0qdr4Q2cJlH1Edv5WJlv7rwMXh-fxoGjbBCkBFMi4CmscZSpmGkSMhTgbVzVDiXPGXKJjxRzLBQUylDQ00cJVpIxa3w8uhCUUNPoZ3Pc3sGSAolIsEZNVhHXGJJmAo1IdZdDlwIeg6dagFnnzV3xqxZu4u_qy9h32-ZBxReQbtYlPYadvWqyJaLG7_h36JOrjM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH5oFZeLW8XdHMSTYzPZJuOtiFKxloJaeivZBnqZStsp-O_NZGqr4MVbSEgyJCHvzcv3vg_gijBjLDU20lzoiAksI2VUHCXaG3-b6SwL8m29dtLpyH4_7a7AzSIXxjkXwGfutiyGt3w7MkUZKmukEkt_flZhjTNGcJWttYio4MS3Eb4B13MizUa39UJKtHqljMEJC1EUUlF0kl96KsGcPO7870N2ob7My0PdhcXZgxWX78P2D0rBAyi8H-j7om9EHVK5Rc0fr9RomKOe_0GeBwFRs5iOSjLLEtCMvAeLlmIe5VwlDm84CaNUGUtoCZi5Q030Woxn7rMO748Pb_etaC6tEA0JptOIZonBSmUx0yQWmcTGuypCKJFx7VKRam55bKhSsaU2YamRSgsng0C61NTSQ6jlo9wdAVJSSyYFpxYbJhRWhOvYEOL89SCkpMdwUC7g4KNizxjM1-7k7-pL2Gy9vbQH7afO8ylshe0L8MIzqE3HhTuHdTObDifji7D5X92asXo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Prognostics+and+System+Health+Management+Conference&rft.atitle=Recent+Research+and+Applications+in+Variational+Autoencoders+for+Industrial+Prognosis+and+Health+Management%3A+A+Survey&rft.au=Zemouri%2C+Ryad&rft.au=Levesque%2C+Melanie&rft.au=Boucher%2C+Etienne&rft.au=Kirouac%2C+Mathieu&rft.date=2022-05-01&rft.pub=IEEE&rft.eissn=2166-5656&rft.spage=193&rft.epage=203&rft_id=info:doi/10.1109%2FPHM2022-London52454.2022.00042&rft.externalDocID=9808794 |