HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs
Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient general...
Saved in:
| Published in: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) pp. 7733 - 7743 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2022
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient generalization ability - for high-fidelity free-view synthesis of dynamic humans. Analogous to how IBRNet assists NeRF by avoiding perscene training, HumanNeRF employs an aggregated pixel-alignment feature across multi-view inputs along with a pose embedded non-rigid deformation field for tackling dynamic motions. The raw Human-NeRF can already produce reasonable rendering on sparse video inputs of unseen subjects and camera settings. To further improve the rendering quality, we augment our solution with in-hour scene-specific fine-tuning, and an appearance blending module for combining the benefits of both neural volumetric rendering and neural texture blending. Extensive experiments on various multi-view dynamic hu-man datasets demonstrate effectiveness of our approach in synthesizing photo-realistic free-view humans under challenging motions and with very sparse camera view inputs. |
|---|---|
| AbstractList | Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient generalization ability - for high-fidelity free-view synthesis of dynamic humans. Analogous to how IBRNet assists NeRF by avoiding perscene training, HumanNeRF employs an aggregated pixel-alignment feature across multi-view inputs along with a pose embedded non-rigid deformation field for tackling dynamic motions. The raw Human-NeRF can already produce reasonable rendering on sparse video inputs of unseen subjects and camera settings. To further improve the rendering quality, we augment our solution with in-hour scene-specific fine-tuning, and an appearance blending module for combining the benefits of both neural volumetric rendering and neural texture blending. Extensive experiments on various multi-view dynamic hu-man datasets demonstrate effectiveness of our approach in synthesizing photo-realistic free-view humans under challenging motions and with very sparse camera view inputs. |
| Author | Zhang, Jiakai Yu, Jingyi Zhang, Yingliang Lin, Pei Zhao, Fuqiang Yang, Wei Xu, Lan |
| Author_xml | – sequence: 1 givenname: Fuqiang surname: Zhao fullname: Zhao, Fuqiang organization: ShanghaiTech University – sequence: 2 givenname: Wei surname: Yang fullname: Yang, Wei organization: Huazhong University of Science and Technology – sequence: 3 givenname: Jiakai surname: Zhang fullname: Zhang, Jiakai organization: ShanghaiTech University – sequence: 4 givenname: Pei surname: Lin fullname: Lin, Pei organization: ShanghaiTech University – sequence: 5 givenname: Yingliang surname: Zhang fullname: Zhang, Yingliang organization: DGene – sequence: 6 givenname: Jingyi surname: Yu fullname: Yu, Jingyi organization: ShanghaiTech University – sequence: 7 givenname: Lan surname: Xu fullname: Xu, Lan organization: ShanghaiTech University |
| BookMark | eNotjktOwzAUAA0Cibb0BLDwBRLesx1_2KGobSpVgMpnWznJs2TUulGSLnp7ELCazWg0U3aVjokYu0fIEcE9lJ-v20Joa3MBQuQApnAXbIpaF0o7peUlmyBomWmH7obNh-ELAKRA1M5OWFWdDj4903b5yBchxCZSGvdnvqJEvR-p5b8C3_o2-tQQX0batzz0xwN_63w_EF-n7jQOt-w6-P1A83_O2Mdy8V5W2eZltS6fNlkUIMdMgpGkjfLQkDV1gYRGS9XallSNZLxvm9r9_EItUIFRWoSggq6pCMFZL2fs7q8biWjX9fHg-_POWQsISn4DsGpOLQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52688.2022.00759 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665469463 9781665469463 |
| EISSN | 1063-6919 |
| EndPage | 7743 |
| ExternalDocumentID | 9880104 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program grantid: 2018YFB2100500 funderid: 10.13039/501100012166 – fundername: STCSM grantid: 2015F0203-000-06 funderid: 10.13039/501100003399 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i203t-3073e674a0ce87b51e17634d8de4b1e7aadcb90630b21407462ff4f6be5ff98a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870759100057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:15:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-3073e674a0ce87b51e17634d8de4b1e7aadcb90630b21407462ff4f6be5ff98a3 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9880104 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-June |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.5801084 |
| Snippet | Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 7733 |
| SubjectTerms | Cameras Computer vision Dynamics Entertainment industry Image and video synthesis and generation; 3D from multi-view and sensors; Face and gestures; Motion and tracking; Pose estimation and tracking Rendering (computer graphics) Telepresence Training |
| Title | HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs |
| URI | https://ieeexplore.ieee.org/document/9880104 |
| WOSCitedRecordID | wos000870759100057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDHB48Td1E5w9y8Ghd26RJ43WsTJAxpo7dRn68wEC6sXWC_71JWqYHL95KKSm8JM17r-_7eQjdG20I01a4GVBxRMFmkbBCRiZ23jIHSEXosTR_4ZNJvliIaQs9HLQwABCKz-DRX4Z_-Wat9z5VNhBusSUe_nnEOau1Wod8CnGRDBN5o45LYjEYzqczDzPxBVypx3JyDyT91UMlHCFF538vP0W9Hy0enh5OmTPUgvIcdRrnETdbc9dF45COn8CseMKjwIVww3184Zor7fxKHB7AswAjcIMWvnYNe3kJft248Bbwc7nZV7seei9Gb8Nx1LRJiFZpTCqfPSLAOJWxhpyrLIHEfTSoyQ1QlQCX0mglPFtLpS6c4pSl1lLLFGTWilySC9Qu1yVcIpxQzWhMcka4ojLLpNuvhIOQVttUanOFut4wy01Nwlg2Nun_ffsanXjL14VVN6hdbfdwi471Z7Xabe_C9H0DdsmbSA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDmIKepm7ib3PwaF3bpE3jdaxsOMuYc-w20uQFBtKNtRP8702yMj148VZKSSEvad57fd_PQ-hBSUViqbmxQO57FHTkcc2Fp3zjLTOAkLseS7MRy7JkPufjBnrca2EAwBWfwZO9dP_y1Upubaqsy81iCyz888B2zqrVWvuMCjGxTMyTWh8X-Lzbm40nFmdiS7hCC-ZkFkn6q4uKO0TS1v9ef4I6P2o8PN6fM6eoAcUZatXuI643Z9lGA5eQz2CSPuO-I0OY4T6-8I4sbTxL7B7AE4cjMIOmtnoNW4EJflubABfwsFhvq7KD3tP-tDfw6kYJ3jL0SWXzRwRiRoUvIWF5FEBgPhtUJQpoHgATQsmcW7pWHpqAitE41JrqOIdIa54Ico6axaqAC4QDKmPqkyQmLKciioTZsYQBF1rqUEh1idp2YhbrHQtjUc_J1d-379HRYPo6WoyG2cs1OrZW2JVZ3aBmtdnCLTqUn9Wy3Nw5U34Dv1uekQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=HumanNeRF%3A+Efficiently+Generated+Human+Radiance+Field+from+Sparse+Inputs&rft.au=Zhao%2C+Fuqiang&rft.au=Yang%2C+Wei&rft.au=Zhang%2C+Jiakai&rft.au=Lin%2C+Pei&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7733&rft.epage=7743&rft_id=info:doi/10.1109%2FCVPR52688.2022.00759&rft.externalDocID=9880104 |