A Low-Complexity Approach for Constructing the Optimal Binary Finite-Length Block Code
Improving the bit error rate (BER) performance of finite-length block code is required in the scenarios of ultra-reliable and low latency communications. Nonetheless, the complexity of algorithms to find such a high performance block code increases dramatically as blocklength increases. Towards this...
Uloženo v:
| Vydáno v: | Australasian Telecommunication Networks and Applications Conference [proceedings] s. 316 - 319 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
30.11.2022
|
| Témata: | |
| ISSN: | 2474-154X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Improving the bit error rate (BER) performance of finite-length block code is required in the scenarios of ultra-reliable and low latency communications. Nonetheless, the complexity of algorithms to find such a high performance block code increases dramatically as blocklength increases. Towards this end, the paper proposes a low-complexity recursive algorithm to search the optimal binary block codes subject to the requirement of the minimum Hamming distance. As a result, two optimal code sets of code-length 16 and 32 are found with code rate of 1/2. The simulation results show that the constructed codes under binary phase shift keying (BPSK) modulation outperform the systematic polar codes in the same blocklength in terms of the BER performance. |
|---|---|
| ISSN: | 2474-154X |
| DOI: | 10.1109/ITNAC55475.2022.9998390 |