A Low-Complexity Approach for Constructing the Optimal Binary Finite-Length Block Code

Improving the bit error rate (BER) performance of finite-length block code is required in the scenarios of ultra-reliable and low latency communications. Nonetheless, the complexity of algorithms to find such a high performance block code increases dramatically as blocklength increases. Towards this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Australasian Telecommunication Networks and Applications Conference [proceedings] s. 316 - 319
Hlavní autoři: Zheng, Dongsheng, Zhou, Zijian, Li, Wenyao, Jiao, Bingli
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 30.11.2022
Témata:
ISSN:2474-154X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Improving the bit error rate (BER) performance of finite-length block code is required in the scenarios of ultra-reliable and low latency communications. Nonetheless, the complexity of algorithms to find such a high performance block code increases dramatically as blocklength increases. Towards this end, the paper proposes a low-complexity recursive algorithm to search the optimal binary block codes subject to the requirement of the minimum Hamming distance. As a result, two optimal code sets of code-length 16 and 32 are found with code rate of 1/2. The simulation results show that the constructed codes under binary phase shift keying (BPSK) modulation outperform the systematic polar codes in the same blocklength in terms of the BER performance.
ISSN:2474-154X
DOI:10.1109/ITNAC55475.2022.9998390