A Low-Complexity Approach for Constructing the Optimal Binary Finite-Length Block Code
Improving the bit error rate (BER) performance of finite-length block code is required in the scenarios of ultra-reliable and low latency communications. Nonetheless, the complexity of algorithms to find such a high performance block code increases dramatically as blocklength increases. Towards this...
Gespeichert in:
| Veröffentlicht in: | Australasian Telecommunication Networks and Applications Conference [proceedings] S. 316 - 319 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
30.11.2022
|
| Schlagworte: | |
| ISSN: | 2474-154X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Improving the bit error rate (BER) performance of finite-length block code is required in the scenarios of ultra-reliable and low latency communications. Nonetheless, the complexity of algorithms to find such a high performance block code increases dramatically as blocklength increases. Towards this end, the paper proposes a low-complexity recursive algorithm to search the optimal binary block codes subject to the requirement of the minimum Hamming distance. As a result, two optimal code sets of code-length 16 and 32 are found with code rate of 1/2. The simulation results show that the constructed codes under binary phase shift keying (BPSK) modulation outperform the systematic polar codes in the same blocklength in terms of the BER performance. |
|---|---|
| ISSN: | 2474-154X |
| DOI: | 10.1109/ITNAC55475.2022.9998390 |