Distributed Push-Sum Algorithm for Multi-Agent optimization Via One-Point Gradient Estimator
This paper studies the distributed optimization problem over a multi-agent network that consists of multiple nodes, where the objective function of the problem is the sum of the local objective functions of nodes. The goal of the network is to minimize the collective objective function through local...
Gespeichert in:
| Veröffentlicht in: | Chinese Control Conference S. 6013 - 6018 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Technical Committee on Control Theory, Chinese Association of Automation
01.07.2019
|
| Schlagworte: | |
| ISSN: | 1934-1768 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper studies the distributed optimization problem over a multi-agent network that consists of multiple nodes, where the objective function of the problem is the sum of the local objective functions of nodes. The goal of the network is to minimize the collective objective function through local interactions among nodes. We propose an efficient distributed optimization algorithm that is based on push-sum algorithm and one-point gradient estimator, which removes the needs for doubly stochastic weight matrix and the information of subgradients of the objective functions. The convergence of the algorithm is established by deriving an O(1/T 1/6 ) (with T being the number of iterations) rate of convergence for the proposed algorithm. |
|---|---|
| ISSN: | 1934-1768 |
| DOI: | 10.23919/ChiCC.2019.8865859 |