Integrating External Resources with a Task-Based Programming Model
Accessing external resources (e.g., loading input data, checkpointing snapshots, and out-of-core processing) can have a significant impact on the performance of supercomputer applications. However, no existing programming systems for high-performance computing directly manage and optimize these exte...
Gespeichert in:
| Veröffentlicht in: | Proceedings, 24th IEEE International Conference on High Performance Computing : 18-21 December 2017, Jaipur, India S. 307 - 316 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.12.2017
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accessing external resources (e.g., loading input data, checkpointing snapshots, and out-of-core processing) can have a significant impact on the performance of supercomputer applications. However, no existing programming systems for high-performance computing directly manage and optimize these external accesses. As a result, users must explicitly manage external accesses alongside their computation at the application level, which can result in both correctness and performance issues. We address this limitation by introducing Iris, a task-based programming model with semantics for external resources. Iris allows applications to describe their access requirements to external resources and the relationship of those accesses to the computation. Iris incorporates external I/O into a deferred execution model, reschedules external I/O to overlap I/O with computation, and reduces external I/O when possible. We evaluate Iris on three microbenchmarks representative of important workloads in HPC and a full combustion simulation, S3D. We demonstrate that the Iris implementation of S3D reduces the external I/O overhead by up to 20×, compared to the Legion and the Fortran implementations. |
|---|---|
| AbstractList | Accessing external resources (e.g., loading input data, checkpointing snapshots, and out-of-core processing) can have a significant impact on the performance of supercomputer applications. However, no existing programming systems for high-performance computing directly manage and optimize these external accesses. As a result, users must explicitly manage external accesses alongside their computation at the application level, which can result in both correctness and performance issues. We address this limitation by introducing Iris, a task-based programming model with semantics for external resources. Iris allows applications to describe their access requirements to external resources and the relationship of those accesses to the computation. Iris incorporates external I/O into a deferred execution model, reschedules external I/O to overlap I/O with computation, and reduces external I/O when possible. We evaluate Iris on three microbenchmarks representative of important workloads in HPC and a full combustion simulation, S3D. We demonstrate that the Iris implementation of S3D reduces the external I/O overhead by up to 20×, compared to the Legion and the Fortran implementations. |
| Author | Jia, Zhihao McCormick, Patrick Maltzahn, Carlos Treichler, Sean Aiken, Alex Bauer, Michael Shipman, Galen Watkins, Noah |
| Author_xml | – sequence: 1 givenname: Zhihao surname: Jia fullname: Jia, Zhihao – sequence: 2 givenname: Sean surname: Treichler fullname: Treichler, Sean – sequence: 3 givenname: Galen surname: Shipman fullname: Shipman, Galen – sequence: 4 givenname: Michael surname: Bauer fullname: Bauer, Michael – sequence: 5 givenname: Noah surname: Watkins fullname: Watkins, Noah – sequence: 6 givenname: Carlos surname: Maltzahn fullname: Maltzahn, Carlos – sequence: 7 givenname: Patrick surname: McCormick fullname: McCormick, Patrick – sequence: 8 givenname: Alex surname: Aiken fullname: Aiken, Alex |
| BookMark | eNotjctOwzAURI0EElCyZsHGP5DiR-LHkkalrVREhcq6urGvSyAPZAcBf08QrGYxZ85cktN-6JGQa87mnDN7u2521VwwrueMsUKekMxqw0tplBBWynOSpfQ6VdwqIy2_IItNP-Ixwtj0R7r8GjH20NInTMNHdJjoZzO-UKB7SG_5AhJ6uovDxHfd7-Bh8NhekbMAbcLsP2fk-X65r9b59nG1qe62eSOYGHPJFFjQ07EPwrIyWFP7oAwrnPPChdrWYArlHfi6FDKUwLUHzdDyUDhfyhm5-fM2iHh4j00H8ftghNFaCfkDu-FLLQ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/HiPC.2017.00043 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781538622933 1538622939 |
| EndPage | 316 |
| ExternalDocumentID | 8287762 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i202t-306a9a7968df2905f98bdf6804ccd2cfb9ba846dcadb523f5a17da70e91f4cd53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426994700034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:51:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i202t-306a9a7968df2905f98bdf6804ccd2cfb9ba846dcadb523f5a17da70e91f4cd53 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8287762 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Dec |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-Dec |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings, 24th IEEE International Conference on High Performance Computing : 18-21 December 2017, Jaipur, India |
| PublicationTitleAbbrev | HIPC |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001968391 |
| Score | 2.0319657 |
| Snippet | Accessing external resources (e.g., loading input data, checkpointing snapshots, and out-of-core processing) can have a significant impact on the performance... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 307 |
| SubjectTerms | Coherence Computational modeling Deferred Execution External Resource I/O Iris recognition Programming Runtime Semantics Task analysis Task Based Programming Model |
| Title | Integrating External Resources with a Task-Based Programming Model |
| URI | https://ieeexplore.ieee.org/document/8287762 |
| WOSCitedRecordID | wos000426994700034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb8IgFH5xZoed3KbLfofDjmNSBClXjcZdjAeXeDPAg8Rs08Uf-_sHbdUs2WUnGiht-ih98PW97wN44vHFkE44ikohFcYKamRiwsxzp7NOMLyLhdiEGo_z2UxPavB8yIXx3hfBZ_4lHRb_8nHldgkqaydydpU-uCexKHO1jniK7kZfn1XsPRnT7dFi0k-xW6pk5Pwln1J4j2Hjf_c9h9YxDY9MDg7mAmp-eQmNvQ4DqaZlE3qvFedDPIsMKlpnsgfmNyRhrcSQqdm80170WpiumqKyPlOHpIb20YK34WDaH9FKG4EuOONbGlf6RhsVHxoD10wGnVsM3ZwJ55C7YLU1cWmBzqCNe80gTabQKOZ1FoRD2bmC-nK19NdAHEfBbWzWJoiOYAal0tbnhlkmuQ830EwmmX-V9Bfzyhq3f1ffwVmyeRnxcQ_17XrnH-DUfW8Xm_VjMWY_l_iZow |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4QNNETKhjf9uDRSre0dHuFQCAi4YAJN9JnQlQgPPz9trsLxMSLt6bdtunstjOdnfk-gCcaPgxumMFWCIuZ0gwrHpEw09TIpOEVbdqMbEIMh-lkIkcleN7nwjjnsuAz9xKL2b98uzDb6CqrR3B2EQ_cI84YJXm21sGjIptB2ycFfk9CZL03G7Vj9JbIMTl_Eahk-qNb-d_MZ1A7JOKh0V7FnEPJzS-gsmNiQMXGrEKrX6A-hKdQpwB2RjvX_BpFbytSaKzWH7gV9JaNo8a4rK_YIfKhfdbgvdsZt3u4YEfAM0roBgdbX0klwqKtp5JwL1NtfTMlzBhLjddSq2BcWKOsDrdNz1UirBLEycQzY3njEsrzxdxdATLUMqpDs1SeNRhRlgupXaqIJpw6fw3VKJLpMgfAmBbSuPm7-hFOeuO3wXTQH77ewmmUfx7_cQflzWrr7uHYfG9m69VD9v5-AMRInOo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings%2C+24th+IEEE+International+Conference+on+High+Performance+Computing+%3A+18-21+December+2017%2C+Jaipur%2C+India&rft.atitle=Integrating+External+Resources+with+a+Task-Based+Programming+Model&rft.au=Jia%2C+Zhihao&rft.au=Treichler%2C+Sean&rft.au=Shipman%2C+Galen&rft.au=Bauer%2C+Michael&rft.date=2017-12-01&rft.pub=IEEE&rft.spage=307&rft.epage=316&rft_id=info:doi/10.1109%2FHiPC.2017.00043&rft.externalDocID=8287762 |