Integrating External Resources with a Task-Based Programming Model

Accessing external resources (e.g., loading input data, checkpointing snapshots, and out-of-core processing) can have a significant impact on the performance of supercomputer applications. However, no existing programming systems for high-performance computing directly manage and optimize these exte...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings, 24th IEEE International Conference on High Performance Computing : 18-21 December 2017, Jaipur, India s. 307 - 316
Hlavní autoři: Jia, Zhihao, Treichler, Sean, Shipman, Galen, Bauer, Michael, Watkins, Noah, Maltzahn, Carlos, McCormick, Patrick, Aiken, Alex
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2017
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Accessing external resources (e.g., loading input data, checkpointing snapshots, and out-of-core processing) can have a significant impact on the performance of supercomputer applications. However, no existing programming systems for high-performance computing directly manage and optimize these external accesses. As a result, users must explicitly manage external accesses alongside their computation at the application level, which can result in both correctness and performance issues. We address this limitation by introducing Iris, a task-based programming model with semantics for external resources. Iris allows applications to describe their access requirements to external resources and the relationship of those accesses to the computation. Iris incorporates external I/O into a deferred execution model, reschedules external I/O to overlap I/O with computation, and reduces external I/O when possible. We evaluate Iris on three microbenchmarks representative of important workloads in HPC and a full combustion simulation, S3D. We demonstrate that the Iris implementation of S3D reduces the external I/O overhead by up to 20×, compared to the Legion and the Fortran implementations.
DOI:10.1109/HiPC.2017.00043