Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes
A novel algorithm to detect road lanes in the eigen-lane space is proposed in this paper. First, we introduce the notion of eigenlanes, which are data-driven descriptors for structurally diverse lanes, including curved, as well as straight, lanes. To obtain eigenlanes, we perform the best rank-M app...
Uložené v:
| Vydané v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 17142 - 17150 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2022
|
| Predmet: | |
| ISSN: | 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A novel algorithm to detect road lanes in the eigen-lane space is proposed in this paper. First, we introduce the notion of eigenlanes, which are data-driven descriptors for structurally diverse lanes, including curved, as well as straight, lanes. To obtain eigenlanes, we perform the best rank-M approximation of a lane matrix containing all lanes in a training set. Second, we generate a set of lane candi-dates by clustering the training lanes in the eigenlane space. Third, using the lane candidates, we determine an optimal set of lanes by developing an anchor-based detection net-work, called SIIC-Net. Experimental results demonstrate that the proposed algorithm provides excellent detection performance for structurally diverse lanes. Our codes are available at https://github.com/dongkwonjin/Eigenlanes. |
|---|---|
| AbstractList | A novel algorithm to detect road lanes in the eigen-lane space is proposed in this paper. First, we introduce the notion of eigenlanes, which are data-driven descriptors for structurally diverse lanes, including curved, as well as straight, lanes. To obtain eigenlanes, we perform the best rank-M approximation of a lane matrix containing all lanes in a training set. Second, we generate a set of lane candi-dates by clustering the training lanes in the eigenlane space. Third, using the lane candidates, we determine an optimal set of lanes by developing an anchor-based detection net-work, called SIIC-Net. Experimental results demonstrate that the proposed algorithm provides excellent detection performance for structurally diverse lanes. Our codes are available at https://github.com/dongkwonjin/Eigenlanes. |
| Author | Jeong, Seong-Gyun Kim, Chang-Su Kwon, Heeyeon Park, Wonhui Jin, Dongkwon |
| Author_xml | – sequence: 1 givenname: Dongkwon surname: Jin fullname: Jin, Dongkwon email: dongkwonjin@mcl.korea.ac.kr organization: Korea University – sequence: 2 givenname: Wonhui surname: Park fullname: Park, Wonhui email: whpark@mcl.korea.ac.kr organization: Korea University – sequence: 3 givenname: Seong-Gyun surname: Jeong fullname: Jeong, Seong-Gyun email: seonggyun.jeong@42dot.ai organization: 42dot.ai – sequence: 4 givenname: Heeyeon surname: Kwon fullname: Kwon, Heeyeon email: heeyeon.kwon@42dot.ai organization: 42dot.ai – sequence: 5 givenname: Chang-Su surname: Kim fullname: Kim, Chang-Su email: changsukim@korea.ac.kr organization: Korea University |
| BookMark | eNotj11LwzAUhqMouM39Ar3IH2g9SdrTxDtp5xQKil-3I42nEqntSLrB_r314-qBl4cH3jk76YeeGLsUkAoB5qp8e3zKJWqdSpAyBYGYH7H5DzI0GapjNhOAKkEjzBlbxvgJAEoKgUbP2HrlP6jvbE_xmld2tEkV_J56Xk8Tryi64LfjECJvh8Cfx7Bz4y7YrjvwavJCpF8znrPT1naRlv9csNfb1Ut5l9QP6_vypk68MGZMSBcKnJYtEUpX5EY72UrXZFSQVpmBd-fyplA4eY0GENA0rSBwEwxONxbs4q_riWizDf7LhsPG6EJrBPUN0epOlg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52688.2022.01665 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1665469463 9781665469463 |
| EISSN | 1063-6919 |
| EndPage | 17150 |
| ExternalDocumentID | 9878860 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: NRF-2021R1A4A1031864,NRF-2022R1A2B5B03002310 funderid: 10.13039/501100003725 |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i199t-e8730c82fee62c7598c2f2cb4e7e83490dcc5b736873b80010bbf1e0cbbf96063 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870783002093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:15:10 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i199t-e8730c82fee62c7598c2f2cb4e7e83490dcc5b736873b80010bbf1e0cbbf96063 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_9878860 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.37071 |
| Snippet | A novel algorithm to detect road lanes in the eigen-lane space is proposed in this paper. First, we introduce the notion of eigenlanes, which are data-driven... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 17142 |
| SubjectTerms | Codes Computer vision Image analysis Machine vision Navigation Navigation and autonomous driving; Scene analysis and understanding; Vision applications and systems Roads Training |
| Title | Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes |
| URI | https://ieeexplore.ieee.org/document/9878860 |
| WOSCitedRecordID | wos000870783002093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEBVp6KGnLknpjg49VoktyVp6zdIeQghdQm5BlscQKEmJ00L_viPFpD300pONEBiPkWbe-L0nQm5TyFxU43gFksncJ8yCUixzIDkgDrKx3zEd6fHYzGZ20iB3Oy0MAETyGXTCbfyXX6z8R2iVdREfG6MQoO9prbdarV0_RSCSUdbU6rg0sd3edPIUzEwCgYvzDtY2IYP8OkMlppDh4f8efkTaP1o8OtllmWPSgOUJOayLR1ovzapFHgbBVzNQV6t72ncbx_rrsJPREQ5RhJdxe1itK4plKn2OtrHBcuPti_YjNwPizKpNXoeDl94jq09JYIvU2g0Dg4vUG14CKO51Zo3nJfe5BA1GSJsU3me5Fgrn5SZgwDwvU0g8XgJ8EaekuVwt4YzQtPASuACEIE4KUdrUOl1Ij8gVjHLJOWmFuMzft0YY8zokF38PX5KDEPgtr-qKNPHF4Jrs-8_NolrfxK_3DV22mx8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6MKehp6ib-NgePdmvSNE287ocT6xg6x26jTV9hIJ2sU_C_N8nK9ODFU0sIhCYk732v3_cF4IZimDg1jhbIPZ5q31MohBcmyBkaHKRcvWMaR6ORnM3UuAa3Wy0MIjryGbbtq_uXny31hy2VdQw-llIYgL4Tcs7oRq21ragEBssIJSt9HPVVpzsdP1s7E0vhYqxtshsbQ37douKCyKDxv-EPoPWjxiPjbZw5hBoWR9Co0kdSbc6yCfd966xpyavlHekl68TrrexZRmLTRAzAdAfEclUSk6iSF2cca0033r5Iz7Ez0PUsW_A66E-6Q6-6J8FbUKXWHkqzTbVkOaJgOgqV1CxnOuUYoQy48jOtwzQKhOmXSosC0zSn6GvzsAAmOIZ6sSzwBAjNNEcWoAEhCQ-CXFGVRBnXBruiFIl_Ck07L_P3jRXGvJqSs7-br2FvOHmK5_HD6PEc9u0ibFhWF1A3H4mXsKs_14tydeVW8hufOJ5m |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Eigenlanes%3A+Data-Driven+Lane+Descriptors+for+Structurally+Diverse+Lanes&rft.au=Jin%2C+Dongkwon&rft.au=Park%2C+Wonhui&rft.au=Jeong%2C+Seong-Gyun&rft.au=Kwon%2C+Heeyeon&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=17142&rft.epage=17150&rft_id=info:doi/10.1109%2FCVPR52688.2022.01665&rft.externalDocID=9878860 |