Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes

A novel algorithm to detect road lanes in the eigen-lane space is proposed in this paper. First, we introduce the notion of eigenlanes, which are data-driven descriptors for structurally diverse lanes, including curved, as well as straight, lanes. To obtain eigenlanes, we perform the best rank-M app...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 17142 - 17150
Hlavní autori: Jin, Dongkwon, Park, Wonhui, Jeong, Seong-Gyun, Kwon, Heeyeon, Kim, Chang-Su
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2022
Predmet:
ISSN:1063-6919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A novel algorithm to detect road lanes in the eigen-lane space is proposed in this paper. First, we introduce the notion of eigenlanes, which are data-driven descriptors for structurally diverse lanes, including curved, as well as straight, lanes. To obtain eigenlanes, we perform the best rank-M approximation of a lane matrix containing all lanes in a training set. Second, we generate a set of lane candi-dates by clustering the training lanes in the eigenlane space. Third, using the lane candidates, we determine an optimal set of lanes by developing an anchor-based detection net-work, called SIIC-Net. Experimental results demonstrate that the proposed algorithm provides excellent detection performance for structurally diverse lanes. Our codes are available at https://github.com/dongkwonjin/Eigenlanes.
AbstractList A novel algorithm to detect road lanes in the eigen-lane space is proposed in this paper. First, we introduce the notion of eigenlanes, which are data-driven descriptors for structurally diverse lanes, including curved, as well as straight, lanes. To obtain eigenlanes, we perform the best rank-M approximation of a lane matrix containing all lanes in a training set. Second, we generate a set of lane candi-dates by clustering the training lanes in the eigenlane space. Third, using the lane candidates, we determine an optimal set of lanes by developing an anchor-based detection net-work, called SIIC-Net. Experimental results demonstrate that the proposed algorithm provides excellent detection performance for structurally diverse lanes. Our codes are available at https://github.com/dongkwonjin/Eigenlanes.
Author Jeong, Seong-Gyun
Kim, Chang-Su
Kwon, Heeyeon
Park, Wonhui
Jin, Dongkwon
Author_xml – sequence: 1
  givenname: Dongkwon
  surname: Jin
  fullname: Jin, Dongkwon
  email: dongkwonjin@mcl.korea.ac.kr
  organization: Korea University
– sequence: 2
  givenname: Wonhui
  surname: Park
  fullname: Park, Wonhui
  email: whpark@mcl.korea.ac.kr
  organization: Korea University
– sequence: 3
  givenname: Seong-Gyun
  surname: Jeong
  fullname: Jeong, Seong-Gyun
  email: seonggyun.jeong@42dot.ai
  organization: 42dot.ai
– sequence: 4
  givenname: Heeyeon
  surname: Kwon
  fullname: Kwon, Heeyeon
  email: heeyeon.kwon@42dot.ai
  organization: 42dot.ai
– sequence: 5
  givenname: Chang-Su
  surname: Kim
  fullname: Kim, Chang-Su
  email: changsukim@korea.ac.kr
  organization: Korea University
BookMark eNotj11LwzAUhqMouM39Ar3IH2g9SdrTxDtp5xQKil-3I42nEqntSLrB_r314-qBl4cH3jk76YeeGLsUkAoB5qp8e3zKJWqdSpAyBYGYH7H5DzI0GapjNhOAKkEjzBlbxvgJAEoKgUbP2HrlP6jvbE_xmld2tEkV_J56Xk8Tryi64LfjECJvh8Cfx7Bz4y7YrjvwavJCpF8znrPT1naRlv9csNfb1Ut5l9QP6_vypk68MGZMSBcKnJYtEUpX5EY72UrXZFSQVpmBd-fyplA4eY0GENA0rSBwEwxONxbs4q_riWizDf7LhsPG6EJrBPUN0epOlg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52688.2022.01665
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665469463
9781665469463
EISSN 1063-6919
EndPage 17150
ExternalDocumentID 9878860
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: NRF-2021R1A4A1031864,NRF-2022R1A2B5B03002310
  funderid: 10.13039/501100003725
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i199t-e8730c82fee62c7598c2f2cb4e7e83490dcc5b736873b80010bbf1e0cbbf96063
IEDL.DBID RIE
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000870783002093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:15:10 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i199t-e8730c82fee62c7598c2f2cb4e7e83490dcc5b736873b80010bbf1e0cbbf96063
PageCount 9
ParticipantIDs ieee_primary_9878860
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online)
PublicationTitleAbbrev CVPR
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 2.3707092
Snippet A novel algorithm to detect road lanes in the eigen-lane space is proposed in this paper. First, we introduce the notion of eigenlanes, which are data-driven...
SourceID ieee
SourceType Publisher
StartPage 17142
SubjectTerms Codes
Computer vision
Image analysis
Machine vision
Navigation
Navigation and autonomous driving; Scene analysis and understanding; Vision applications and systems
Roads
Training
Title Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes
URI https://ieeexplore.ieee.org/document/9878860
WOSCitedRecordID wos000870783002093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePDkoxXf5ODRtLvZzWbitQ89SCm-6K0k01koSCvdKvjvTdKlevDiKSEElsySzHzJN98wdq0SNK6QIMCgErkiJYBSEHmuJCrQM21dLDahRyOYTMy4wW62uTBEFMln1And-JY_W-JHuCrrenwMUHiAvqO13uRqbe9TMo9kCgN1dlyamG7vdfwYxEwCgUvKjo9tggf5VUMlupDh_v8-fsDaP7l4fLz1MoesQYsjtl8Hj7zemlWL3Q2Crmagrla3vG_XVvRX4STjD36Ie3gZj4flquI-TOVPUTY2SG68ffF-5GZQnFm12ctw8Ny7F3WVBDFPjVkLAr9JEWRJVEjUygDKUqLLSRNkuUlmiMrprPDzHAQM6FyZUoK-CfAlO2bNxXJBJ4wD2MRZsNKh9LDZ2JQwLVWWW0As09kpawW7TN83QhjT2iRnfw-fs71g-A2v6oI1_cLoku3i53pera7i3_sGboebvg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECWNmuipamv8loNHaXdZ2B289sMaa9NoNb01QGeTJqY13Wrivxfopnrw4glCSAgQmHnw5g0h1zKyyqQcGCgrmZAoGWAMTAjJrYRsmmkTkk1kgwGMx2pYITebWBhEDOQzbPhq-MufLuyHfyprOnwMkDqAvi2F4PE6WmvzopI4LJMqKOPj4kg1W6_DJy9n4ilcnDecd-NtyK8sKsGIdKv_G36f1H-i8ehwY2cOSAXnh6Rauo-0PJxFjdx1vLKmJ68Wt7StV5q1l_4uo33XRB3ADBfEYllQ56jS5yAc60U33r5oO7AzMPQs6uSl2xm1eqzMk8BmsVIrhuCOqQWeI6bcZlKB5Tm3RmCGkAgVTa2VJktS18-AR4HG5DFG1hUewCRHZGu-mOMxoQA6Mho0N5Y74Kx0jDbOZSI0WJvH0xNS8-syeV9LYUzKJTn9u_mK7PZGj_1J_37wcEb2_CasWVbnZMtNEi_Ijv1czYrlZdjJb7dZnwU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=Eigenlanes%3A+Data-Driven+Lane+Descriptors+for+Structurally+Diverse+Lanes&rft.au=Jin%2C+Dongkwon&rft.au=Park%2C+Wonhui&rft.au=Jeong%2C+Seong-Gyun&rft.au=Kwon%2C+Heeyeon&rft.date=2022-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=17142&rft.epage=17150&rft_id=info:doi/10.1109%2FCVPR52688.2022.01665&rft.externalDocID=9878860