An exact minimization algorithm for generalized Reed-Muller expressions

A generalized Reed-Muller expression (GRM) is obtained by negating some of the literals in a positive polarity Reed-Muller expression (PPRM). There are at most 2/sup n2(n-1)/ different GRMs for an n-variable function. A minimum GRM is one with the fewest products. This paper presents certain propert...

Full description

Saved in:
Bibliographic Details
Published in:1994 IEEE Asia-Pacific Conference on Circuits and Systems pp. 460 - 465
Main Authors: Sasao, T., Dednath, D.
Format: Conference Proceeding
Language:English
Japanese
Published: IEEE 17.12.2002
Subjects:
ISBN:0780324404, 9780780324404
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A generalized Reed-Muller expression (GRM) is obtained by negating some of the literals in a positive polarity Reed-Muller expression (PPRM). There are at most 2/sup n2(n-1)/ different GRMs for an n-variable function. A minimum GRM is one with the fewest products. This paper presents certain properties and an exact minimization algorithm for GRMs. The minimization algorithm uses binary decision diagrams. Up to five variables, all the representative functions of NP-equivalence classes were generated, and minimized. A table compares the number of products necessary to represent 5-variable functions for 7 classes of expressions: FPRMs, KROs, PSDRMs, PSD-KROs, GRMs, ESOPs, and SOPs. GRMs require, on the average, fewer products than sum-of-products expressions and have easily testable realizations.
ISBN:0780324404
9780780324404
DOI:10.1109/APCCAS.1994.514594