Sub-linear time compressed sensing using sparse-graph codes
We consider the problem of recovering the support of an arbitrary K-sparse N-length vector in the presence of noise, where the sparsity K = O(N δ ) is sub-linear in N for some 0 <; δ <; 1. A new family of sparse measurement matrices is introduced with a low-complexity recovery algorithm, which...
Uloženo v:
| Vydáno v: | Proceedings / IEEE International Symposium on Information Theory s. 1645 - 1649 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2015
|
| Témata: | |
| ISSN: | 2157-8095, 2157-8117 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the problem of recovering the support of an arbitrary K-sparse N-length vector in the presence of noise, where the sparsity K = O(N δ ) is sub-linear in N for some 0 <; δ <; 1. A new family of sparse measurement matrices is introduced with a low-complexity recovery algorithm, which achieves a sub-linear measurement cost O(K log 1.3̇ N) and sub-linear computational complexity O(K log 1.3̇ N). Our measurement system is designed to capture observations of the signal through the parity constraints of sparse-graph codes, and to recover the signal by using a simple peeling decoder. We formally connect general sparse recovery problems with sparse-graph decoding, and showcase our design in terms of the measurement cost, computational complexity and recovery performance. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
| ISSN: | 2157-8095 2157-8117 |
| DOI: | 10.1109/ISIT.2015.7282735 |