Optimal Linear Codes Over the Field of Order 7

We construct some new linear codes over the field of order 7 to determine the exact value of the minimum length for which a linear code of dimension four with given minimum weight exists for some open cases. Most of the new codes are constructed as projective duals of some 7-divisible codes from som...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2020 Algebraic and Combinatorial Coding Theory (ACCT) s. 113 - 117
Hlavní autoři: Nomura, Keita, Maruta, Tatsuya
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 11.10.2020
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We construct some new linear codes over the field of order 7 to determine the exact value of the minimum length for which a linear code of dimension four with given minimum weight exists for some open cases. Most of the new codes are constructed as projective duals of some 7-divisible codes from some orbits of a projectivity in the projective space.
DOI:10.1109/ACCT51235.2020.9383246