Optimal Linear Codes Over the Field of Order 7
We construct some new linear codes over the field of order 7 to determine the exact value of the minimum length for which a linear code of dimension four with given minimum weight exists for some open cases. Most of the new codes are constructed as projective duals of some 7-divisible codes from som...
Uloženo v:
| Vydáno v: | 2020 Algebraic and Combinatorial Coding Theory (ACCT) s. 113 - 117 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
11.10.2020
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We construct some new linear codes over the field of order 7 to determine the exact value of the minimum length for which a linear code of dimension four with given minimum weight exists for some open cases. Most of the new codes are constructed as projective duals of some 7-divisible codes from some orbits of a projectivity in the projective space. |
|---|---|
| DOI: | 10.1109/ACCT51235.2020.9383246 |