Sapphire Rapids: The Next-Generation Intel Xeon Scalable Processor

Sapphire Rapids (SPR) is the next-generation Xeon® Processor with increased core count, greater than 100MB shared L3 cache, 8 DDR5 channels, 32GT/s PCIe/CXL lanes, 16GT/s UPI lanes and integrated accelerators supporting cryptography, compression and data streaming. The processor is made up of 4 die...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digest of technical papers - IEEE International Solid-State Circuits Conference Jg. 65; S. 44 - 46
Hauptverfasser: Nassif, Nevine, Munch, Ashley O., Molnar, Carleton L., Pasdast, Gerald, Lyer, Sitaraman V., Yang, Zibing, Mendoza, Oscar, Huddart, Mark, Venkataraman, Srikrishnan, Kandula, Sireesha, Marom, Rafi, Kern, Alexandra M., Bowhill, Bill, Mulvihill, David R., Nimmagadda, Srikanth, Kalidindi, Varma, Krause, Jonathan, Haq, Mohammad M., Sharma, Roopali, Duda, Kevin
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 20.02.2022
Schlagworte:
ISSN:2376-8606
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sapphire Rapids (SPR) is the next-generation Xeon® Processor with increased core count, greater than 100MB shared L3 cache, 8 DDR5 channels, 32GT/s PCIe/CXL lanes, 16GT/s UPI lanes and integrated accelerators supporting cryptography, compression and data streaming. The processor is made up of 4 die (Fig. 2.2.7) manufactured on Intel 7 process technology which features dual-poly-pitch SuperFin (SF) transistors with performance enhancements beyond 10SF,>25% additional MIM density over SuperMIM and a metal stack with a 400nm pitch routing layer optimized for global interconnects. This layer achieves ~30% delay reduction at the same signal density and is key for achieving the required latency. The core provides better performance via a programmable power management controller. New technologies include Intel Advanced Matrix Extensions (AMX), a matrix multiplication capability for acceleration of AI workloads and new virtualization technologies to address new and emerging workloads.
ISSN:2376-8606
DOI:10.1109/ISSCC42614.2022.9731107