XLSTM-HVED: Cross-Modal Brain Tumor Segmentation and MRI Reconstruction Method Using Vision Xlstm and Heteromodal Variational Encoder-Decoder
Neurogliomas are among the most aggressive forms of can-cer, presenting considerable challenges in both treatment and monitoring due to their unpredictable biological behav-ior. Magnetic resonance imaging (MRI) is currently the preferred method for diagnosing and monitoring gliomas. However, the lac...
Gespeichert in:
| Veröffentlicht in: | Proceedings (International Symposium on Biomedical Imaging) S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
14.04.2025
|
| Schlagworte: | |
| ISSN: | 1945-8452 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Neurogliomas are among the most aggressive forms of can-cer, presenting considerable challenges in both treatment and monitoring due to their unpredictable biological behav-ior. Magnetic resonance imaging (MRI) is currently the preferred method for diagnosing and monitoring gliomas. However, the lack of specific imaging techniques often com-promises the accuracy of tumor segmentation during the imaging process. To address this issue, we introduce the XLSTM-HVED model. This model integrates a hetero-modal encoder-decoder framework with the Vision XLSTM module to reconstruct missing MRI modalities. By deeply fusing spa-tial and temporal features, it enhances tumor segmentation performance. The key innovation of our approach is the Self-Attention Variational Encoder (SAVE) module, which im-proves the integration of modal features. Additionally, it op-timizes the interaction of features between segmentation and reconstruction tasks through the Squeeze-Fusion-Excitation Cross Awareness (SFECA) module. Our experiments using the BraTS 2024 dataset demonstrate that our model signif-icantly outperforms existing advanced methods in handling cases where modalities are missing. Our source code is available at https://github.com/Quanat0607/XLSTM-HVED. |
|---|---|
| AbstractList | Neurogliomas are among the most aggressive forms of can-cer, presenting considerable challenges in both treatment and monitoring due to their unpredictable biological behav-ior. Magnetic resonance imaging (MRI) is currently the preferred method for diagnosing and monitoring gliomas. However, the lack of specific imaging techniques often com-promises the accuracy of tumor segmentation during the imaging process. To address this issue, we introduce the XLSTM-HVED model. This model integrates a hetero-modal encoder-decoder framework with the Vision XLSTM module to reconstruct missing MRI modalities. By deeply fusing spa-tial and temporal features, it enhances tumor segmentation performance. The key innovation of our approach is the Self-Attention Variational Encoder (SAVE) module, which im-proves the integration of modal features. Additionally, it op-timizes the interaction of features between segmentation and reconstruction tasks through the Squeeze-Fusion-Excitation Cross Awareness (SFECA) module. Our experiments using the BraTS 2024 dataset demonstrate that our model signif-icantly outperforms existing advanced methods in handling cases where modalities are missing. Our source code is available at https://github.com/Quanat0607/XLSTM-HVED. |
| Author | Ke, Yifan Jiang, Shuo Zhu, Shenghao Zhu, Zhu Wang, Yuanhan Qin, Feiwei Wang, Changmiao Chen, Xu Chen, Yifei Chen, Weihong Liu, Chang |
| Author_xml | – sequence: 1 givenname: Shenghao surname: Zhu fullname: Zhu, Shenghao organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 2 givenname: Yifei surname: Chen fullname: Chen, Yifei organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 3 givenname: Shuo surname: Jiang fullname: Jiang, Shuo organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 4 givenname: Weihong surname: Chen fullname: Chen, Weihong organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 5 givenname: Chang surname: Liu fullname: Liu, Chang organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 6 givenname: Yuanhan surname: Wang fullname: Wang, Yuanhan organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 7 givenname: Xu surname: Chen fullname: Chen, Xu organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 8 givenname: Yifan surname: Ke fullname: Ke, Yifan email: qinfeiwei@hdu.edu.cn organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 9 givenname: Feiwei surname: Qin fullname: Qin, Feiwei organization: Hangzhou Dianzi University,Hangzhou,China – sequence: 10 givenname: Changmiao surname: Wang fullname: Wang, Changmiao organization: Shenzhen Research Institute of Big Data,Shenzhen,China – sequence: 11 givenname: Zhu surname: Zhu fullname: Zhu, Zhu email: zhuzhu_cs@zju.edu.cn organization: Zhejiang University, School of Medicine,Children's Hospital,Hangzhou,China |
| BookMark | eNo1kMtOwzAQRQ0CiVL6B0j4B1LsOI5tdvQBjdQIqS91VznJtBg1NrLTRT-CfyYEmM0dHekeaeYWXVlnAaEHSoaUEvWYLUdZSrikw5jEfNgiSWPBL9BACSUZozwmPE4vUY-qhEcy4fENGoTwQdoRScJI0kNf2_lylUezzXTyhMfehRDlrtJHPPLaWLw61c7jJRxqsI1ujLNY2wrniwwvoHQ2NP5UdjiH5t1VeB2MPeCNCT9sewxN3RVm0IB3dWfeaG86VbtPbekq8NEEurxD13t9DDD4yz5av0xX41k0f3vNxs_zyFAhmwgkiYkqSlmkxb4UKYP2bkkStZepACU4SGAi4YXSgtIiLStN2g4jkDJWScX66P7XawBg9-lNrf159_9B9g0TNGfq |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISBI60581.2025.10981275 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331520526 |
| EISSN | 1945-8452 |
| EndPage | 5 |
| ExternalDocumentID | 10981275 |
| Genre | orig-research |
| GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i178t-e80209bc8b6bfc763e2758049f867e975e8e3745b9a711b6cda0e8030e633d893 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001546451000601&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 01:53:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i178t-e80209bc8b6bfc763e2758049f867e975e8e3745b9a711b6cda0e8030e633d893 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10981275 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-April-14 |
| PublicationDateYYYYMMDD | 2025-04-14 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
| PublicationTitleAbbrev | ISBI |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000744304 |
| Score | 2.2956681 |
| Snippet | Neurogliomas are among the most aggressive forms of can-cer, presenting considerable challenges in both treatment and monitoring due to their unpredictable... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Biological system modeling Brain modeling Brain Tumor Segmentation Brain tumors Image reconstruction Image segmentation Magnetic resonance imaging Missing Modality Monitoring Multi-task Learning Multimodal MRI Multitasking Neuroglioma Technological innovation |
| Title | XLSTM-HVED: Cross-Modal Brain Tumor Segmentation and MRI Reconstruction Method Using Vision Xlstm and Heteromodal Variational Encoder-Decoder |
| URI | https://ieeexplore.ieee.org/document/10981275 |
| WOSCitedRecordID | wos001546451000601&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JboMwELWaqIf20i1Vd_nQq1NMAJsesymRShQ1acQtwvZQRQpQZelf9J9rOyRpDz30BEIMwmPDeJb3BqFHQypOheHDo5ITTzZSos0QI8KToP1n5Qpf2WYTbDDgcRwOS7C6xcIAgC0-g7o5tbl8Vci1CZXpLzzkhpC8giqMsQ1YaxdQ0bbQ0755WcOlb33qj5p9k_UzbqDr17fSv_qoWDPSPfnnC5yi2h6Qh4c7U3OGDiA_R8c_uAQv0Ff8MhpHpDfptJ9xy9g-EhUqmeOmaQKBx-usWOARvGcl2CjHSa5w9NrHxgPd88jiyPaUxraWAE8s9BzH8-UqswI9Uz5TZPbJE-1nl7FE3MkNOH5B2mCPNfTW7YxbPVL2WiAzyviKANf7xlBILgKRSv3TAT1Mrt2HlAcMQuYDhwbzfBEmjFIRSJU4WqbhQKBnVG96LlE1L3K4QtgTenU6bihcnnquokLZ7uFu6lPppK5zjWpGs9OPDZ3GdKvUmz-u36IjM38mhUO9O1TV-oB7dCg_V7Pl4sEugm8-77Ki |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT4MwFG50mqgv3ma82wdfO2lXoPi4WyCOZXG48LaspZglA8wu_gv_s23HNn3wwScI4RB6Wjg9l-87ADxqUnHMNR8eFgxRUU-RMkMu4lRI5T8nhNuJaTbh9nosjr1-CVY3WBgppSk-kzV9anL5SSGWOlSmvnCPaULyXbBnU0rwCq61Cakoa0iVd15Wcambn4JBI9B5P-0IEru2lv_VScUYks7xP1_hBFS3kDzY3xibU7Aj8zNw9INN8Bx8xd1BFCJ_2G49w6a2figskvEUNnQbCBgts2IGB_I9K-FGORznCQxfA6h90C2TLAxNV2loqgng0IDPYTydLzIj4OsCmiIzTx4qT7uMJsJ2ruHxM9SS5lgFb5121PRR2W0BTbDLFkgytXP0uGDc4alQvx2phsmUA5Eyx5Wea0sm6y61uTd2MeaOSMaWkqlb0lFzqrY9F6CSF7m8BJBytT4t4nHCUkoSzBPTP5ykNhZWSqwrUNWaHX2sCDVGa6Ve_3H9ARz4UdgddYPeyw041HOpEzqY3oKK0o28A_viczGZz-7NgvgGtGu16Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=XLSTM-HVED%3A+Cross-Modal+Brain+Tumor+Segmentation+and+MRI+Reconstruction+Method+Using+Vision+Xlstm+and+Heteromodal+Variational+Encoder-Decoder&rft.au=Zhu%2C+Shenghao&rft.au=Chen%2C+Yifei&rft.au=Jiang%2C+Shuo&rft.au=Chen%2C+Weihong&rft.date=2025-04-14&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI60581.2025.10981275&rft.externalDocID=10981275 |