Taming Uncertainty in Critical Scenario Generation for Testing Automated Driving Systems

Scenario-based testing in simulation has become a cornerstone of industrial practice for systematically assessing autonomous driving systems across diverse and relevant situations. Generating critical scenarios is central to this methodology, yet it remains challenging due to the inherent uncertaint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 IEEE Conference on Software Testing, Verification and Validation (ICST) S. 464 - 475
Hauptverfasser: Grosse, Selma, Molin, Adam, Nickovic, Dejan, Gambi, Alessio, Mateis, Cristinel
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 31.03.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Scenario-based testing in simulation has become a cornerstone of industrial practice for systematically assessing autonomous driving systems across diverse and relevant situations. Generating critical scenarios is central to this methodology, yet it remains challenging due to the inherent uncertainties resulting from scenario parameterization. While parameterization is essential for modeling unpredictable factors, like weather, an excess of parameters hampers testing effectiveness. To address these challenges, this paper introduces a methodology that guides testers in selecting scenario parameters and managing the associated uncertainties. Our approach integrates specification-driven and optimization-based test generation with sensitivity analysis, enabling testers to assess the impact of scenario parameters on scenario criticality. We implemented our approach using well-established industry technologies and evaluated it in a highway case study on three reference search-based scenario generation methods with varying degrees of exploitativeness. Results from our evaluation suggest that reducing the parameter-induced uncertainty can improve the ability of some testing methods to identify critical scenarios while maintaining the diversity of input parameter values.
AbstractList Scenario-based testing in simulation has become a cornerstone of industrial practice for systematically assessing autonomous driving systems across diverse and relevant situations. Generating critical scenarios is central to this methodology, yet it remains challenging due to the inherent uncertainties resulting from scenario parameterization. While parameterization is essential for modeling unpredictable factors, like weather, an excess of parameters hampers testing effectiveness. To address these challenges, this paper introduces a methodology that guides testers in selecting scenario parameters and managing the associated uncertainties. Our approach integrates specification-driven and optimization-based test generation with sensitivity analysis, enabling testers to assess the impact of scenario parameters on scenario criticality. We implemented our approach using well-established industry technologies and evaluated it in a highway case study on three reference search-based scenario generation methods with varying degrees of exploitativeness. Results from our evaluation suggest that reducing the parameter-induced uncertainty can improve the ability of some testing methods to identify critical scenarios while maintaining the diversity of input parameter values.
Author Molin, Adam
Gambi, Alessio
Mateis, Cristinel
Nickovic, Dejan
Grosse, Selma
Author_xml – sequence: 1
  givenname: Selma
  surname: Grosse
  fullname: Grosse, Selma
  organization: DENSO AUTOMOTIVE Deutschland GmbH,Germany
– sequence: 2
  givenname: Adam
  surname: Molin
  fullname: Molin, Adam
  organization: DENSO AUTOMOTIVE Deutschland GmbH,Germany
– sequence: 3
  givenname: Dejan
  surname: Nickovic
  fullname: Nickovic, Dejan
  organization: AIT Austrian Institute of Technology GmbH,Austria
– sequence: 4
  givenname: Alessio
  surname: Gambi
  fullname: Gambi, Alessio
  organization: AIT Austrian Institute of Technology GmbH,Austria
– sequence: 5
  givenname: Cristinel
  surname: Mateis
  fullname: Mateis, Cristinel
  organization: AIT Austrian Institute of Technology GmbH,Austria
BookMark eNo1j9FKwzAUhiPohc69gWBeYPUkaZvmclSdg4EX7cC7cZacSGBNJY1C316HevXBB98P_w27jGMkxu4FFEKAedi2XV9LU5tCgqyKH9UYUOUFWxptGqVEBY0o5TV763EI8Z3vo6WUMcQ88xB5m0IOFk-8sxQxhZFvKFLCHMbI_Zh4T1M-d-vPPA6YyfHHFL7OppunTMN0y648niZa_nHB9s9Pffuy2r1utu16twpCN3lltRX6CFSXQmvtrCqVlZX0oBAQauesoNqDJdkI4ZQHXyJocOiM9Ect1YLd_e4GIjp8pDBgmg__h9U3IdlReQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICST62969.2025.10989034
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès UT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331508142
EndPage 475
ExternalDocumentID 10989034
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i178t-c7c17b0e641777dc343c252f03a0a06ddc1e6f0ce2811d3f0f4a070dad92fb723
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001506893900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu May 29 05:57:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-c7c17b0e641777dc343c252f03a0a06ddc1e6f0ce2811d3f0f4a070dad92fb723
PageCount 12
ParticipantIDs ieee_primary_10989034
PublicationCentury 2000
PublicationDate 2025-March-31
PublicationDateYYYYMMDD 2025-03-31
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-31
  day: 31
PublicationDecade 2020
PublicationTitle 2025 IEEE Conference on Software Testing, Verification and Validation (ICST)
PublicationTitleAbbrev ICST
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9035597
Snippet Scenario-based testing in simulation has become a cornerstone of industrial practice for systematically assessing autonomous driving systems across diverse and...
SourceID ieee
SourceType Publisher
StartPage 464
SubjectTerms Autonomous driving
Autonomous vehicles
Measurement
Road transportation
Scenario generation
Scenario-based testing
Sensitivity analysis
Software algorithms
Software testing
Test pattern generators
Testing
Uncertainty
Title Taming Uncertainty in Critical Scenario Generation for Testing Automated Driving Systems
URI https://ieeexplore.ieee.org/document/10989034
WOSCitedRecordID wos001506893900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sCa4kdixyMqVLBUlZpK3So_zlIGElRSpP577CQFMTCw-SlLZ599tu-7D6F7zSKxkReJMZlIUkWzJLdgE--4AwJhTWndkk3I2SxfrdS8B6u3WBgAaJ3PYByT7V--q-02PpUFDVe5IjwdoIGUogNr9T5boerhdbIoBFMi4k9YNt63_sWb0h4b0-N_DniCRj8APDz_PlpO0QFUZ2hV6LeQw8tQ2_7jNztcVnhPVoAXFqpw861xF0o6ShwHkxQXMZBG6Pe4bepgn4LDT5syviPgPlz5CC2nz8XkJemJEZKSyrxJrLRUGgIipVJKZ3nKLcuYJ1wTTYRzloLwxALLKXXcE5_qoNpOO8W8kYyfo2FVV3CBsMwpAc-NBGNS6r3yLlhInoeN0hAN6hKNoljW713si_VeIld_lF-joyj8DrV3g4bNZgu36NB-NuXH5q6dsS_MI5rL
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl5X89rN5ijV0mIthW6ht5JNJtCDu1K3gv_eZHerePDgLU8Ck9dkMt98CN1qFoiNXBLleZxEQtE4Sg2YyFlugYBfU1rXZBNyPE7nczVpweo1FgYAauczuAvJ-i_flmYdTGV-h6tUES620U4sBCMNXKv12vKV98PeNEuYSgIChcV3m_a_mFPqi6N_8M8hD1H3B4KHJ9-XyxHaguIYzTP96nN45mvrn_zqEy8LvKErwFMDhX_7lrgJJh1kjr1SirMQSsP3e1hXpddQweLH1TJYEnAbsLyLZv2nrDeIWmqEaEllWkVGGipzAomgUkpruOCGxcwRrokmibWGQuKIAZZSarkjTmi_ua22irlcMn6COkVZwCnCMqUEHM8l5LmgzilnvY7kuD8qc6JBnaFuEMvirYl-sdhI5PyP8hu0N8heRovRcPx8gfbDRDQYvkvUqVZruEK75qNavq-u69n7AgcOnhI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+Conference+on+Software+Testing%2C+Verification+and+Validation+%28ICST%29&rft.atitle=Taming+Uncertainty+in+Critical+Scenario+Generation+for+Testing+Automated+Driving+Systems&rft.au=Grosse%2C+Selma&rft.au=Molin%2C+Adam&rft.au=Nickovic%2C+Dejan&rft.au=Gambi%2C+Alessio&rft.date=2025-03-31&rft.pub=IEEE&rft.spage=464&rft.epage=475&rft_id=info:doi/10.1109%2FICST62969.2025.10989034&rft.externalDocID=10989034