Towards Scalable Handwriting Communication via EEG Decoding and Latent Embedding Integration

In recent years, brain-computer interfaces have made advances in decoding various motor-related tasks, including gesture recognition and movement classification, utilizing electroencephalogram (EEG) data. These developments are fundamental in exploring how neural signals can be interpreted to recogn...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The ... International Winter Conference on Brain-Computer Interface s. 1 - 4
Hlavní autoři: Kim, Jun-Young, Kim, Deok-Seon, Lee, Seo-Hyun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 24.02.2025
Témata:
ISSN:2572-7672
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, brain-computer interfaces have made advances in decoding various motor-related tasks, including gesture recognition and movement classification, utilizing electroencephalogram (EEG) data. These developments are fundamental in exploring how neural signals can be interpreted to recognize specific physical actions. This study centers on a written alphabet classification task, where we aim to decode EEG signals associated with handwriting. To achieve this, we incorporate hand kinematics to guide the extraction of the consistent embeddings from high-dimensional neural recordings using auxiliary variables (CEBRA). These CEBRA embeddings, along with the EEG, are processed by a parallel convolutional neural network model that extracts features from both data sources simultaneously. The model classifies nine different handwritten characters, including symbols such as alphabets, exclamation marks and commas. We evaluate the model using a quantitative five-fold cross-validation approach and explore the structure of the embedding space through visualizations. Our approach achieves a classification accuracy of 91 % for the nine-class task, demonstrating the feasibility of fine-grained handwriting decoding from EEG signals.
AbstractList In recent years, brain-computer interfaces have made advances in decoding various motor-related tasks, including gesture recognition and movement classification, utilizing electroencephalogram (EEG) data. These developments are fundamental in exploring how neural signals can be interpreted to recognize specific physical actions. This study centers on a written alphabet classification task, where we aim to decode EEG signals associated with handwriting. To achieve this, we incorporate hand kinematics to guide the extraction of the consistent embeddings from high-dimensional neural recordings using auxiliary variables (CEBRA). These CEBRA embeddings, along with the EEG, are processed by a parallel convolutional neural network model that extracts features from both data sources simultaneously. The model classifies nine different handwritten characters, including symbols such as alphabets, exclamation marks and commas. We evaluate the model using a quantitative five-fold cross-validation approach and explore the structure of the embedding space through visualizations. Our approach achieves a classification accuracy of 91 % for the nine-class task, demonstrating the feasibility of fine-grained handwriting decoding from EEG signals.
Author Kim, Jun-Young
Kim, Deok-Seon
Lee, Seo-Hyun
Author_xml – sequence: 1
  givenname: Jun-Young
  surname: Kim
  fullname: Kim, Jun-Young
  email: j_y_kim@korea.ac.kr
  organization: Korea University,Dept. of Artificial Intelligence,Seoul,Republic of Korea
– sequence: 2
  givenname: Deok-Seon
  surname: Kim
  fullname: Kim, Deok-Seon
  email: deokseon_kim@korea.ac.kr
  organization: Korea University,Dept. of Artificial Intelligence,Seoul,Republic of Korea
– sequence: 3
  givenname: Seo-Hyun
  surname: Lee
  fullname: Lee, Seo-Hyun
  email: seohyunlee@korea.ac.kr
  organization: Korea University,Dept. of Brain and Cognitive Engineering,Seoul,Republic of Korea
BookMark eNo1kN1KwzAYhqMoOOfuQCQ30Jm_Nsmh1roVBh44z4TxJfk6ImsqbXV4986pRy8878_Be0nOUpeQkBvO5pwze3tf1kXOjJkLJvL5gUheMHNCZlZbIyXPBbfCnpKJyLXIdKHFBZkNwxtjTHJjLVMT8rru9tCHgT572IHbIV1CCvs-jjFtadm17UeKHsbYJfoZgVbVgj6g78KPfUjSFYyYRlq1DsMR1mnEbX9sXJHzBnYDzv50Sl4eq3W5zFZPi7q8W2WRazNmnjWNYFZJ6b0GEYxSTOVGIDSKCylRSLChyINDh96ZwhjhNHAJUlnnuZyS69_diIib9z620H9t_g-R3-nCVwc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BCI65088.2025.10931608
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISBN 9798331521929
EISSN 2572-7672
EndPage 4
ExternalDocumentID 10931608
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-c0ff209433cc7a2d84404582eaf41233e23a9d65dbebecb86882b7a13a349bc13
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001471781800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Apr 02 05:44:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-c0ff209433cc7a2d84404582eaf41233e23a9d65dbebecb86882b7a13a349bc13
PageCount 4
ParticipantIDs ieee_primary_10931608
PublicationCentury 2000
PublicationDate 2025-Feb.-24
PublicationDateYYYYMMDD 2025-02-24
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-24
  day: 24
PublicationDecade 2020
PublicationTitle The ... International Winter Conference on Brain-Computer Interface
PublicationTitleAbbrev BCI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189904
Score 1.8999417
Snippet In recent years, brain-computer interfaces have made advances in decoding various motor-related tasks, including gesture recognition and movement...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Brain modeling
brain-computer interface
Brain-computer interfaces
classification
Data visualization
Decoding
deep-learning
electroencephalogram
Electroencephalography
Feature extraction
Motors
signal processing
Soft sensors
Symbols
Title Towards Scalable Handwriting Communication via EEG Decoding and Latent Embedding Integration
URI https://ieeexplore.ieee.org/document/10931608
WOSCitedRecordID wos001471781800038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT8JAEIA3Sjx48gHGd_ZgvBXsbtvdHhWLkBBCIhoOJmRfNRxYCBSM_97ZpWA4ePDWbPaRzDSdR-ebRehOmjQxJlJBHnMIUCQxgeBaBDG4p2DOqaQ-dfHeZb0eHw7TfgmrexbGGOOLz0zdPfp_-Xqqli5V1nCtj8LEob37jCVrWGubUIGXE76sUUkBw9TGU7Pj_Q-IAklc3yzeuUbFW5HW0T_PP0a1Xx4P97eW5gTtGXuKqo8WAubJN77HvozT58er6GPgC2EX-BWk77go3BZWf7neRfYT7_AgeDUWOMte8DPEoG5nDDNxF7xPW-BsIo32g52yowSsqKG3VjZotoPyCoVgHDJeBOohz4krHqRKMUE0d-0AY06MyCOwWdQQKlKdxFo6ZUqegMMtmQipoFEqVUjPUMVOrTlHWAoh8zgiJOV5RARLhVI8zlNHHGrJ2AWqOYmNZusuGaONsC7_GL9Ch04vHg-PrlGlmC_NDTpQq2K8mN963f4AhpqlgQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LT8IwGMAbgyZ68gHGtz0YbwPWx9YdFYcQJyERDQcT0tfMDgwDA-N_b1sGhoMHb0vTNs33Lfse-35fAbgROgq0JtJLKTMBikDa40xxjxr31JhzLLBLXbwlYa_HhsOoX8LqjoXRWrviM123j-5fvprIuU2VNWzrIz-waO82JQQ1l7jWOqViXk_zbSUlB2wmN-5bXeeBmDgQ0fpq-cZFKs6OtPf_eYIDUPsl8mB_bWsOwZbOj0D1Ljch8_gb3kJXyOky5FXwPnClsDP4YuRvySjY4bn6st2L8g-4QYTARcZhHD_CBxOF2p2hmQkT43_mBYzHQis32C17SpgVNfDajgetjldeouBlfsgKTzbTFNnyQSxlyJFitiEgZUjzlBirhTXCPFIBVcKqU7DAuNwi5D7mmERC-vgYVPJJrk8AFJyLlBKEIpYSxMOIS8loGlnmUIkwPAU1K7HR57JPxmglrLM_xq_BbmfwnIySbu_pHOxZHTlYnFyASjGd60uwIxdFNpteOT3_AFCDqMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+...+International+Winter+Conference+on+Brain-Computer+Interface&rft.atitle=Towards+Scalable+Handwriting+Communication+via+EEG+Decoding+and+Latent+Embedding+Integration&rft.au=Kim%2C+Jun-Young&rft.au=Kim%2C+Deok-Seon&rft.au=Lee%2C+Seo-Hyun&rft.date=2025-02-24&rft.pub=IEEE&rft.eissn=2572-7672&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FBCI65088.2025.10931608&rft.externalDocID=10931608