Towards Scalable Handwriting Communication via EEG Decoding and Latent Embedding Integration

In recent years, brain-computer interfaces have made advances in decoding various motor-related tasks, including gesture recognition and movement classification, utilizing electroencephalogram (EEG) data. These developments are fundamental in exploring how neural signals can be interpreted to recogn...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The ... International Winter Conference on Brain-Computer Interface s. 1 - 4
Hlavní autoři: Kim, Jun-Young, Kim, Deok-Seon, Lee, Seo-Hyun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 24.02.2025
Témata:
ISSN:2572-7672
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In recent years, brain-computer interfaces have made advances in decoding various motor-related tasks, including gesture recognition and movement classification, utilizing electroencephalogram (EEG) data. These developments are fundamental in exploring how neural signals can be interpreted to recognize specific physical actions. This study centers on a written alphabet classification task, where we aim to decode EEG signals associated with handwriting. To achieve this, we incorporate hand kinematics to guide the extraction of the consistent embeddings from high-dimensional neural recordings using auxiliary variables (CEBRA). These CEBRA embeddings, along with the EEG, are processed by a parallel convolutional neural network model that extracts features from both data sources simultaneously. The model classifies nine different handwritten characters, including symbols such as alphabets, exclamation marks and commas. We evaluate the model using a quantitative five-fold cross-validation approach and explore the structure of the embedding space through visualizations. Our approach achieves a classification accuracy of 91 % for the nine-class task, demonstrating the feasibility of fine-grained handwriting decoding from EEG signals.
ISSN:2572-7672
DOI:10.1109/BCI65088.2025.10931608