A Centroid Guided Cluster Transformation for Dynamic Multi-Objective Optimization Algorithm

In recent years, prediction-based algorithms have made significant progress in solving dynamic multi-objective optimization problems (DMOPs). However, most existing algorithms only consider information from several consecutive environments and ignore previous search experiences. This article uses th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 IEEE Congress on Evolutionary Computation (CEC) S. 1 - 8
Hauptverfasser: Zeng, Yi, Xia, Xuewen, Lin, Fenglin, Zhang, Yuehui, Liu, Meitong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 08.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, prediction-based algorithms have made significant progress in solving dynamic multi-objective optimization problems (DMOPs). However, most existing algorithms only consider information from several consecutive environments and ignore previous search experiences. This article uses the search experience of the Regularity Model-Based Multiobjective Estimation of Distribution Algorithm (RM-MEDA) to propose a dynamic multiobjective optimization algorithm based on the centroid-guided cluster transformation (CGCT-RM- MEDA). When the environment changes, the information from the statically optimized model in the previous environment is used to estimate a new distribution model through a cluster transformation. At the same time, the location of the population distribution is predicted using a Long Short-Term Memory (LSTM) network, which is used to estimate the cluster centers of the model distribution. The empirical study evaluated the performance of CGCT-RM-MEDA using 14 benchmark functions and one performance metric. The experimental results show that CGCT-RM-MEDA outperforms seven peer algorithms in performance.
AbstractList In recent years, prediction-based algorithms have made significant progress in solving dynamic multi-objective optimization problems (DMOPs). However, most existing algorithms only consider information from several consecutive environments and ignore previous search experiences. This article uses the search experience of the Regularity Model-Based Multiobjective Estimation of Distribution Algorithm (RM-MEDA) to propose a dynamic multiobjective optimization algorithm based on the centroid-guided cluster transformation (CGCT-RM- MEDA). When the environment changes, the information from the statically optimized model in the previous environment is used to estimate a new distribution model through a cluster transformation. At the same time, the location of the population distribution is predicted using a Long Short-Term Memory (LSTM) network, which is used to estimate the cluster centers of the model distribution. The empirical study evaluated the performance of CGCT-RM-MEDA using 14 benchmark functions and one performance metric. The experimental results show that CGCT-RM-MEDA outperforms seven peer algorithms in performance.
Author Lin, Fenglin
Liu, Meitong
Zeng, Yi
Xia, Xuewen
Zhang, Yuehui
Author_xml – sequence: 1
  givenname: Yi
  surname: Zeng
  fullname: Zeng, Yi
  email: yizengl020@126.com
  organization: Minnan Normal University,College of Physics and Information Engineering,Zhangzhou,China
– sequence: 2
  givenname: Xuewen
  surname: Xia
  fullname: Xia, Xuewen
  email: xwxia@whu.edu.cn
  organization: Minnan Normal University,College of Physics and Information Engineering,Zhangzhou,China
– sequence: 3
  givenname: Fenglin
  surname: Lin
  fullname: Lin, Fenglin
  email: 893699887@qq.com
  organization: Minnan Normal University,College of Physics and Information Engineering,Zhangzhou,China
– sequence: 4
  givenname: Yuehui
  surname: Zhang
  fullname: Zhang, Yuehui
  email: 1147113792@qq.com
  organization: Minnan Normal University,College of Physics and Information Engineering,Zhangzhou,China
– sequence: 5
  givenname: Meitong
  surname: Liu
  fullname: Liu, Meitong
  email: 2062408325@qq.com
  organization: Minnan Normal University,College of Physics and Information Engineering,Zhangzhou,China
BookMark eNo1j8FKxDAYhCPoQdd9A5G8QNf8Sdu0xyWuq7DSS28elqT5o5E2XdJUWJ_eldXDMMPHMDA35DKMAQm5B7YCYPWD2qiygFyuOOPFL8oFA3ZBlrWsKyGgELmA6pq8ranCkOLoLd3O3qKlqp-nhJG2UYfJjXHQyY-BnhJ9PAY9-I6-zn3yWWM-sUv-C2lzSH7w3-fiun8fo08fwy25crqfcPnnC9I-bVr1nO2a7Yta7zIPskqZ1txxNExgAdaiBC0ADUIp0TlegZNO5o5rU_IatEZTnGQ6Zq2GzlmxIHfnWY-I-0P0g47H_f9l8QPGE1Ox
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC65147.2025.11043010
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331534318
EndPage 8
ExternalDocumentID 11043010
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Fujian Province
  funderid: 10.13039/501100003392
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i178t-aa2f2eb03e51dde71a31ebe167eff281f7f74f2ab6291aaeb5aebbc0dda1cfd3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001539410900078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jul 02 05:55:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-aa2f2eb03e51dde71a31ebe167eff281f7f74f2ab6291aaeb5aebbc0dda1cfd3
PageCount 8
ParticipantIDs ieee_primary_11043010
PublicationCentury 2000
PublicationDate 2025-June-8
PublicationDateYYYYMMDD 2025-06-08
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-8
  day: 08
PublicationDecade 2020
PublicationTitle 2025 IEEE Congress on Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9111665
Snippet In recent years, prediction-based algorithms have made significant progress in solving dynamic multi-objective optimization problems (DMOPs). However, most...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
cluster transformation
Clustering algorithms
Dynamic multi-objective optimization algorithm
Heuristic algorithms
Long short term memory
Long Short-Term Memory (LSTM)
Optimization
Prediction algorithms
Predictive models
Reliability
Title A Centroid Guided Cluster Transformation for Dynamic Multi-Objective Optimization Algorithm
URI https://ieeexplore.ieee.org/document/11043010
WOSCitedRecordID wos001539410900078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sDqNnYSOx6r0MLUduhQiaFy7DMEtQkqCb8fx0n5GBgYLFknS5bO1nu2z-8OoTvtKM8klpNIcEmixIZE6iQkVAKTRja7JPPFJsR0miyXct6J1b0WBgD85zMYNF0fyzelrpunsqGjqij0gqp9IXgr1upUvzSQw3Sccsf_wt36WDzYDf5VNsWzxuTon_Mdo_63_g7Pv5jlBO1BcYqeRtg_xZa5wQ91bsDgdF03eQ7w4sfpsyyw6-H7ttI89gJbMsteW2DDMwcRm057iUfr53KbVy-bPlpMxov0kXSlEUhORVIRpZhlkAUhxNQBlKAqpG45KBdgLUuoFVZElqmMM0mVgix2LdOBMYpqa8Iz1CvKAs4RliEIxqyO4khH0uEXZDwAZ7E-SGsvUL9xzOqtTX6x2vnk8g_7FTps3O9_UyXXqFdta7hBB_qjyt-3t37JPgHsrJsg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQQYIJEEW88cDqNnYejscqtBRR2g4ZKjFUiX2GoDZBJeH347gpj4GBwZJlWbJ0Z31nn_3dh9CNNCFPhTogHg8E8ULtEiFDl1ABTChR75LUik3w8TiczcS0IatbLgwA2M9n0Km79i1fFbKqU2VdE6o81xKqtmvprIau1fB-qSO6UT8KzAmAm3sf8zub6b-EU2zcGOz_c8UD1P5m4OHpV2w5RFuQH6GnHrbJ2CJT-K7KFCgcLaq60gGOf5w_ixybHr5da81jS7Elk_R1DW14YkBi2bAvcW_xXKyy8mXZRvGgH0dD0ogjkIzysCRJwjSD1HHBpwaiOE1cahxCAw5as5BqrrmnWZIGTNAkgdQ3LZWOUgmVWrnHqJUXOZwgLFzgjGnp-Z70hEEwSAMHzIi2z7T6FLVrw8zf1uUv5hubnP0xfo12h_HjaD66Hz-co73aFfZvVXiBWuWqgku0Iz_K7H11Zd33CS0fnmk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=A+Centroid+Guided+Cluster+Transformation+for+Dynamic+Multi-Objective+Optimization+Algorithm&rft.au=Zeng%2C+Yi&rft.au=Xia%2C+Xuewen&rft.au=Lin%2C+Fenglin&rft.au=Zhang%2C+Yuehui&rft.date=2025-06-08&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCEC65147.2025.11043010&rft.externalDocID=11043010