A Centroid Guided Cluster Transformation for Dynamic Multi-Objective Optimization Algorithm

In recent years, prediction-based algorithms have made significant progress in solving dynamic multi-objective optimization problems (DMOPs). However, most existing algorithms only consider information from several consecutive environments and ignore previous search experiences. This article uses th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 IEEE Congress on Evolutionary Computation (CEC) s. 1 - 8
Hlavní autori: Zeng, Yi, Xia, Xuewen, Lin, Fenglin, Zhang, Yuehui, Liu, Meitong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 08.06.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, prediction-based algorithms have made significant progress in solving dynamic multi-objective optimization problems (DMOPs). However, most existing algorithms only consider information from several consecutive environments and ignore previous search experiences. This article uses the search experience of the Regularity Model-Based Multiobjective Estimation of Distribution Algorithm (RM-MEDA) to propose a dynamic multiobjective optimization algorithm based on the centroid-guided cluster transformation (CGCT-RM- MEDA). When the environment changes, the information from the statically optimized model in the previous environment is used to estimate a new distribution model through a cluster transformation. At the same time, the location of the population distribution is predicted using a Long Short-Term Memory (LSTM) network, which is used to estimate the cluster centers of the model distribution. The empirical study evaluated the performance of CGCT-RM-MEDA using 14 benchmark functions and one performance metric. The experimental results show that CGCT-RM-MEDA outperforms seven peer algorithms in performance.
AbstractList In recent years, prediction-based algorithms have made significant progress in solving dynamic multi-objective optimization problems (DMOPs). However, most existing algorithms only consider information from several consecutive environments and ignore previous search experiences. This article uses the search experience of the Regularity Model-Based Multiobjective Estimation of Distribution Algorithm (RM-MEDA) to propose a dynamic multiobjective optimization algorithm based on the centroid-guided cluster transformation (CGCT-RM- MEDA). When the environment changes, the information from the statically optimized model in the previous environment is used to estimate a new distribution model through a cluster transformation. At the same time, the location of the population distribution is predicted using a Long Short-Term Memory (LSTM) network, which is used to estimate the cluster centers of the model distribution. The empirical study evaluated the performance of CGCT-RM-MEDA using 14 benchmark functions and one performance metric. The experimental results show that CGCT-RM-MEDA outperforms seven peer algorithms in performance.
Author Lin, Fenglin
Liu, Meitong
Zeng, Yi
Xia, Xuewen
Zhang, Yuehui
Author_xml – sequence: 1
  givenname: Yi
  surname: Zeng
  fullname: Zeng, Yi
  email: yizengl020@126.com
  organization: Minnan Normal University,College of Physics and Information Engineering,Zhangzhou,China
– sequence: 2
  givenname: Xuewen
  surname: Xia
  fullname: Xia, Xuewen
  email: xwxia@whu.edu.cn
  organization: Minnan Normal University,College of Physics and Information Engineering,Zhangzhou,China
– sequence: 3
  givenname: Fenglin
  surname: Lin
  fullname: Lin, Fenglin
  email: 893699887@qq.com
  organization: Minnan Normal University,College of Physics and Information Engineering,Zhangzhou,China
– sequence: 4
  givenname: Yuehui
  surname: Zhang
  fullname: Zhang, Yuehui
  email: 1147113792@qq.com
  organization: Minnan Normal University,College of Physics and Information Engineering,Zhangzhou,China
– sequence: 5
  givenname: Meitong
  surname: Liu
  fullname: Liu, Meitong
  email: 2062408325@qq.com
  organization: Minnan Normal University,College of Physics and Information Engineering,Zhangzhou,China
BookMark eNo1j8FKxDAYhCPoQdd9A5G8QNf8Sdu0xyWuq7DSS28elqT5o5E2XdJUWJ_eldXDMMPHMDA35DKMAQm5B7YCYPWD2qiygFyuOOPFL8oFA3ZBlrWsKyGgELmA6pq8ranCkOLoLd3O3qKlqp-nhJG2UYfJjXHQyY-BnhJ9PAY9-I6-zn3yWWM-sUv-C2lzSH7w3-fiun8fo08fwy25crqfcPnnC9I-bVr1nO2a7Yta7zIPskqZ1txxNExgAdaiBC0ADUIp0TlegZNO5o5rU_IatEZTnGQ6Zq2GzlmxIHfnWY-I-0P0g47H_f9l8QPGE1Ox
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC65147.2025.11043010
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331534318
EndPage 8
ExternalDocumentID 11043010
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Fujian Province
  funderid: 10.13039/501100003392
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i178t-aa2f2eb03e51dde71a31ebe167eff281f7f74f2ab6291aaeb5aebbc0dda1cfd3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001539410900078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jul 02 05:55:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-aa2f2eb03e51dde71a31ebe167eff281f7f74f2ab6291aaeb5aebbc0dda1cfd3
PageCount 8
ParticipantIDs ieee_primary_11043010
PublicationCentury 2000
PublicationDate 2025-June-8
PublicationDateYYYYMMDD 2025-06-08
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-8
  day: 08
PublicationDecade 2020
PublicationTitle 2025 IEEE Congress on Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9112731
Snippet In recent years, prediction-based algorithms have made significant progress in solving dynamic multi-objective optimization problems (DMOPs). However, most...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
cluster transformation
Clustering algorithms
Dynamic multi-objective optimization algorithm
Heuristic algorithms
Long short term memory
Long Short-Term Memory (LSTM)
Optimization
Prediction algorithms
Predictive models
Reliability
Title A Centroid Guided Cluster Transformation for Dynamic Multi-Objective Optimization Algorithm
URI https://ieeexplore.ieee.org/document/11043010
WOSCitedRecordID wos001539410900078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAtqBiYAFHEWx5Y3cZOYsdjFQoMqO3QoRJD5ScEtQkqCb8f20l5DAwMlk6WJUtn6c539ncHwI3OYun5AJRGVKJE4wRJrSMkFNWJwFxEKpTMf2STSbZY8FkHqwcWxhgTPp-ZgRfDW76uVONTZUPnqpI4AFW7jNEW1uqoXxzxYT7OqfP_zEV9JB1sF_9qmxK8xt3BP_c7BP1v_g7OvjzLEdgx5TF4GsGQiq0KDe-bQhsN81Xj6xzA-Y_bZ1VCJ8HbttM8DIAtmsrX1rDBqTMR6469hKPVc7Up6pd1H8zvxvP8AXWtEVCBWVYjIYglRkaxSbEzUAyLGLvjwJQZa0mGLbMssURISjgWwsjUDakirQVWVscnoFdWpTkF0CopuLEZ5dS6WE9w5SviscR4W0qsOAN9r5jlW1v8YrnVyfkf8xdg36s__KbKLkGv3jTmCuypj7p431yHI_sEchWcKA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEICDVEFPKlZ8m4PXtJvsI7vHsrZWrG0PPRQ8lDx1pd2VuuvvN8lufRw8eAiEEAjMwMxkkm8GgBsZ-9zyASj0Io4CiQPEpfQQE5EMGE6YJ1zJ_BEdj-P5PJk2sLpjYZRS7vOZ6tipe8uXhahsqqxrXFXgO6BqOwwC4tW4VsP9Yi_ppv00MhEANfc-EnY22381TnF-Y7D_zxMPQPubwIPTL99yCLZUfgSeetAlY4tMwrsqk0rCdFnZSgdw9iP-LHJoZvC27jUPHWKLJvy1Nm1wYozEqqEvYW_5XKyz8mXVBrNBf5YOUdMcAWWYxiVijGiiuOerEBsTRTHzsVEIjqjSmsRYU00DTRiPSIIZUzw0gwtPSoaFlv4xaOVFrk4A1IKzROk4SiJtbnssEbYmHg2UtaZEs1PQtoJZvNXlLxYbmZz9sX4Ndoezx9FidD9-OAd7VhXub1V8AVrlulKXYEd8lNn7-sqp7xO8op9v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=A+Centroid+Guided+Cluster+Transformation+for+Dynamic+Multi-Objective+Optimization+Algorithm&rft.au=Zeng%2C+Yi&rft.au=Xia%2C+Xuewen&rft.au=Lin%2C+Fenglin&rft.au=Zhang%2C+Yuehui&rft.date=2025-06-08&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCEC65147.2025.11043010&rft.externalDocID=11043010