AI-Augmented DevSecOps Pipelines for Secure and Scalable Service-Oriented Architectures in Cloud-Native Systems
Cloud-native architectures face escalating security challenges that traditional approaches cannot address at scale. This paper presents an AI-augmented DevSecOps framework integrating machine learning models into security pipelines for realtime threat detection and automated response. The framework...
Uloženo v:
| Vydáno v: | 2025 IEEE International Conference on Service-Oriented System Engineering (SOSE) s. 79 - 84 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
21.07.2025
|
| Témata: | |
| ISSN: | 2642-6587 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Cloud-native architectures face escalating security challenges that traditional approaches cannot address at scale. This paper presents an AI-augmented DevSecOps framework integrating machine learning models into security pipelines for realtime threat detection and automated response. The framework achieves 95% attack detection rates with sub-2 second latency at 10 k events/sec. Key contributions include LSTM-based threat detection embedded in CI/CD workflows, adaptive model training with 98% accuracy retention over 6 months, and complete opensource implementation. Experimental validation across multiple attack scenarios demonstrates effectiveness while maintaining operational efficiency in hybrid Kubernetes-serverless environments. |
|---|---|
| ISSN: | 2642-6587 |
| DOI: | 10.1109/SOSE67019.2025.00014 |