AI-Augmented DevSecOps Pipelines for Secure and Scalable Service-Oriented Architectures in Cloud-Native Systems

Cloud-native architectures face escalating security challenges that traditional approaches cannot address at scale. This paper presents an AI-augmented DevSecOps framework integrating machine learning models into security pipelines for realtime threat detection and automated response. The framework...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 IEEE International Conference on Service-Oriented System Engineering (SOSE) s. 79 - 84
Hlavní autor: Mittal, Akshay
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 21.07.2025
Témata:
ISSN:2642-6587
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Cloud-native architectures face escalating security challenges that traditional approaches cannot address at scale. This paper presents an AI-augmented DevSecOps framework integrating machine learning models into security pipelines for realtime threat detection and automated response. The framework achieves 95% attack detection rates with sub-2 second latency at 10 k events/sec. Key contributions include LSTM-based threat detection embedded in CI/CD workflows, adaptive model training with 98% accuracy retention over 6 months, and complete opensource implementation. Experimental validation across multiple attack scenarios demonstrates effectiveness while maintaining operational efficiency in hybrid Kubernetes-serverless environments.
ISSN:2642-6587
DOI:10.1109/SOSE67019.2025.00014