QuIDS: A Large-Scale Distributed Framework for Quantum Irregular Dynamics Simulations

In traditional quantum computing, e.g. in the quantum circuit model, the size of the data structure describing basis elements is well known, because the dimensionality is fixed. General quantum systems, however, exhibit basis elements of variable size, and state spaces having dynamically unbounded,...

Full description

Saved in:
Bibliographic Details
Published in:2025 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) pp. 491 - 500
Main Authors: Touzet, Joseph, Kaya, Oguz, Arrighi, Pablo, Durbec, Amelia
Format: Conference Proceeding
Language:English
Published: IEEE 03.06.2025
Subjects:
ISSN:2995-066X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In traditional quantum computing, e.g. in the quantum circuit model, the size of the data structure describing basis elements is well known, because the dimensionality is fixed. General quantum systems, however, exhibit basis elements of variable size, and state spaces having dynamically unbounded, possibly infinite dimensionality, e.g. for quantum Turing machines or quantum field theories. When seeking to simulate them classically, this imposes an irregularity on both the memory representation of basis elements and the sparsity of the quantum transformations they undergo. Moreover, the high dimensionality of these problems often makes them memory intensive, potentially requiring truncation methods during the simulation. One prototypical example of this would be quantum causal graph dynamics (QCGD), which feature superpositions of colored graphs of different shapes and sizes, driven by the application of local quantum transformations. Numerical observations show that their reversible counterparts typically grow in size; understanding how this is affected in the quantum regime is an arduous computational challenge requiring a particular HPC expertise. In this work, we address this challenge by developing a computational framework for a scalable simulation of such general irregular quantum systems in distributed-memory parallel environments. We lay out the computational challenges arising from the nature of such simulations and then propose effective parallelization, load balancing, memory management, and parallel sampling strategies to accelerate them. We report parallel scalability and accuracy results for up to 1548 MPI processes on a parallel cluster using our framework for the QCGD simulation.
AbstractList In traditional quantum computing, e.g. in the quantum circuit model, the size of the data structure describing basis elements is well known, because the dimensionality is fixed. General quantum systems, however, exhibit basis elements of variable size, and state spaces having dynamically unbounded, possibly infinite dimensionality, e.g. for quantum Turing machines or quantum field theories. When seeking to simulate them classically, this imposes an irregularity on both the memory representation of basis elements and the sparsity of the quantum transformations they undergo. Moreover, the high dimensionality of these problems often makes them memory intensive, potentially requiring truncation methods during the simulation. One prototypical example of this would be quantum causal graph dynamics (QCGD), which feature superpositions of colored graphs of different shapes and sizes, driven by the application of local quantum transformations. Numerical observations show that their reversible counterparts typically grow in size; understanding how this is affected in the quantum regime is an arduous computational challenge requiring a particular HPC expertise. In this work, we address this challenge by developing a computational framework for a scalable simulation of such general irregular quantum systems in distributed-memory parallel environments. We lay out the computational challenges arising from the nature of such simulations and then propose effective parallelization, load balancing, memory management, and parallel sampling strategies to accelerate them. We report parallel scalability and accuracy results for up to 1548 MPI processes on a parallel cluster using our framework for the QCGD simulation.
Author Touzet, Joseph
Arrighi, Pablo
Kaya, Oguz
Durbec, Amelia
Author_xml – sequence: 1
  givenname: Joseph
  surname: Touzet
  fullname: Touzet, Joseph
  email: joseph.touzet@ens-paris-saclay.com
  organization: ENS Paris-Saclay, Centre Borelli,Gif-sur-Yvette,France
– sequence: 2
  givenname: Oguz
  surname: Kaya
  fullname: Kaya, Oguz
  email: oguz.kaya@universite-paris-saclay.fr
  organization: Université Paris-Saclay, LISN, CNRS,Gif-sur-Yvette,France
– sequence: 3
  givenname: Pablo
  surname: Arrighi
  fullname: Arrighi, Pablo
  email: pablo.arrighi@universite-paris-saclay.fr
  organization: Inria, Université Paris-Saclay, LMF, CNRS,Gif-sur-Yvette,France
– sequence: 4
  givenname: Amelia
  surname: Durbec
  fullname: Durbec, Amelia
  email: amelia.durbec@protonmail.com
  organization: ICL, Junia, Université Catholique de Lille, LITL,Lille,France
BookMark eNotkNFKwzAUQKMoOOf-QCQ_0JmbtEnq21idFgpudKJv4yZLRnBtJW2R_b0DfTpwHs7DuSVXbdc6Qh6AzQFY_liui3X9IWWu9Jwzns0ZY5pdkFmuci0EZFymQl6SCc_zLGFSft6QWd8HwyQwzdMcJuR9M5ZF_UQXtMJ4cElt8ehoEfohBjMObk9XERv308Uv6rtINyO2w9jQMkZ3GI8YaXFqsQm2p3VozmIIXdvfkWuPx97N_jkl29XzdvmaVG8v5XJRJQGUHpIU2F4ZZoQFlXlhvU3BWcUtdxasFd4q7bxlgByNkUwJ3GcKEbx0Go2Ykvu_bHDO7b5jaDCednCeI0FJ8QuYX1YF
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPDPSW66978.2025.00080
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331526436
EISSN 2995-066X
EndPage 500
ExternalDocumentID 11106176
Genre orig-research
GrantInformation_xml – fundername: John Templeton Foundation
  funderid: 10.13039/100000925
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-410d7b0b3c175f3cfc41ec72c2ec1cc3fc78efc01a2abb6073ad57aa1f6e8ab3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001566005900065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 01:52:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-410d7b0b3c175f3cfc41ec72c2ec1cc3fc78efc01a2abb6073ad57aa1f6e8ab3
PageCount 10
ParticipantIDs ieee_primary_11106176
PublicationCentury 2000
PublicationDate 2025-June-3
PublicationDateYYYYMMDD 2025-06-03
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-3
  day: 03
PublicationDecade 2020
PublicationTitle 2025 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
PublicationTitleAbbrev IPDPSW
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib061082491
Score 1.9106734
Snippet In traditional quantum computing, e.g. in the quantum circuit model, the size of the data structure describing basis elements is well known, because the...
SourceID ieee
SourceType Publisher
StartPage 491
SubjectTerms Computational efficiency
distributed-memory parallelism
irregular quantum simulation
Memory management
Parallel algorithms
quantum causal graph dynamics
Quantum circuit
quantum computing
Quantum simulation
Quantum system
Scalability
Shape
Software libraries
Turing machines
Title QuIDS: A Large-Scale Distributed Framework for Quantum Irregular Dynamics Simulations
URI https://ieeexplore.ieee.org/document/11106176
WOSCitedRecordID wos001566005900065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aPHhSseI3OXiN3Wy2m6w3cS0WpGzZir2VZHYCPbSVbdffb5Ju1YsHbyEEAi8ZZiaZN4-QuwzBU3l8mppollSgmIqNZr5HrBEZNyqyQWxCjkZqOs2KlqweuDCIGIrP8N4Pw19-tYLGP5X1nF16j5vuk30p5Zastbs8LgxQLpXgLQuYR1lvWORF-Z6mLlFyiWDsH09C-8dfMirBiwyO_rn_Men-8PFo8e1pTsgeLk_J27gZ5uUDfaSvvpqblQ5tpLlvhOs1rLCig13hFXWRKR03DsRmQYd1HfTna5pv1ejXtJwvWhWvdZdMBs-TpxfWiiSwOZdqwxIeVdJERoALBKwACwlHkDHECBxAWJAKLURcx9qY1Fm0rvpSa25TVNqIM9JZrpZ4TmgsrEYTuVVCJRoqByfKfio1KBdzYf-CdD0ks49tG4zZDo3LP-avyKFHPdRViWvS2dQN3pAD-NzM1_VtOLwv-zWcZA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMEEiCK-8cAaGsdJ7LAhStWIUqVKEWyVfblIHdqitOH3Y7spsDCwWZYH69mnu7Pv3SPkNkGwVB6bpobKCwuQngy08myPWM0TpqVfOrEJMRzK9_cka8jqjguDiK74DO_s0P3lFwuo7VNZx9il9bjxNtmJwjBga7rW5vqYQECaZII1PGDmJ50062b5WxybVMmkgoF9PnENIH8JqTg_0jv45w4OSfuHkUezb19zRLZwfkxeR3Xaze_pAx3Yem4vN3gj7dpWuFbFCgva25ReUROb0lFtYKxnNK0qp0Bf0e5aj35J8-ms0fFatsm49zR-7HuNTII3ZUKuvJD5hdC-5mBCgZJDCSFDEAEECAyAlyAkluAzFSitY2PTqoiEUqyMUSrNT0hrvpjjKaEBLxVq36ziMlRQGDhRRLFQIE3UhdEZaVtIJh_rRhiTDRrnf8zfkL3--GUwGaTD5wuyb0_AVVnxS9JaVTVekV34XE2X1bU7yC9Ll5-r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+International+Parallel+and+Distributed+Processing+Symposium+Workshops+%28IPDPSW%29&rft.atitle=QuIDS%3A+A+Large-Scale+Distributed+Framework+for+Quantum+Irregular+Dynamics+Simulations&rft.au=Touzet%2C+Joseph&rft.au=Kaya%2C+Oguz&rft.au=Arrighi%2C+Pablo&rft.au=Durbec%2C+Amelia&rft.date=2025-06-03&rft.pub=IEEE&rft.eissn=2995-066X&rft.spage=491&rft.epage=500&rft_id=info:doi/10.1109%2FIPDPSW66978.2025.00080&rft.externalDocID=11106176