Advanced Optimization of Artificial Neural Networks for a Syngas Power Plant Using Bio-Inspired Optimization Algorithms: : Comparison Between PSO, GA and a Novel Mosquito Inspired Optimization Algorithm
The integration of renewable energies sources into hybrid distributed generation systems presents significant challenges, particularly when predicting critical. Syngas power plants are often integrated into hybrid microgrids to produce electricity instead of fossil fuel-based backup generators. This...
Uložené v:
| Vydané v: | IEEE Conference on Technologies for Sustainability (SusTech) (Online) s. 1 - 6 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
20.04.2025
|
| Predmet: | |
| ISSN: | 2640-6810 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The integration of renewable energies sources into hybrid distributed generation systems presents significant challenges, particularly when predicting critical. Syngas power plants are often integrated into hybrid microgrids to produce electricity instead of fossil fuel-based backup generators. This work proposes an advanced optimization of artificial neural network models applied to the prediction of key parameters for a syngas-based power plant. As part of the proposed approach, a novel Mosquito Mating Swarm Optimization (MMSO) algorithm is presented. The MMSO is compared with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) in terms statistical performance indexes and linear regression. The results show that MMSO outperforms PSO and GA in biomass and air flow parameter prediction for the syngas power plant in accuracy and stability for variable operating conditions. The improvement in parameter prediction through the MMSO contributes to the development of robust and efficient tools for the adaptable management of microgrids and hybrid distributed generation systems. |
|---|---|
| AbstractList | The integration of renewable energies sources into hybrid distributed generation systems presents significant challenges, particularly when predicting critical. Syngas power plants are often integrated into hybrid microgrids to produce electricity instead of fossil fuel-based backup generators. This work proposes an advanced optimization of artificial neural network models applied to the prediction of key parameters for a syngas-based power plant. As part of the proposed approach, a novel Mosquito Mating Swarm Optimization (MMSO) algorithm is presented. The MMSO is compared with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) in terms statistical performance indexes and linear regression. The results show that MMSO outperforms PSO and GA in biomass and air flow parameter prediction for the syngas power plant in accuracy and stability for variable operating conditions. The improvement in parameter prediction through the MMSO contributes to the development of robust and efficient tools for the adaptable management of microgrids and hybrid distributed generation systems. |
| Author | Vega-Gomez, Carlos Lucero-Tenorio, Miriam Aguila-Leon, Jesus Vargas-Salgado, Carlos |
| Author_xml | – sequence: 1 givenname: Jesus surname: Aguila-Leon fullname: Aguila-Leon, Jesus email: jesus.aguila@ieee.org organization: University Center of Tonala - University of Guadalajara,Department of Water and Energy Studies,Guadalajara,Mexico – sequence: 2 givenname: Carlos surname: Vargas-Salgado fullname: Vargas-Salgado, Carlos email: carvarsa@upvnet.upv.es organization: Universitat Politècnica de València,Department of Electrical Engineering,Valencia,Spain – sequence: 3 givenname: Carlos surname: Vega-Gomez fullname: Vega-Gomez, Carlos email: carlos.vega@cutlajomulco.udg.mx organization: University Center of Tlajomulco - University of Guadalajara,Division of Technological Development and Engineering,Guadalajara,Mexico – sequence: 4 givenname: Miriam surname: Lucero-Tenorio fullname: Lucero-Tenorio, Miriam email: miri.lucero.tenorio@ieee.org organization: Universitat Politècnica de València,Industrial Electronic Systems Group,Department of Electronic Engineering,Valencia,Spain |
| BookMark | eNqFkE1PAjEYhKvRxC_-gYc3nl1st9vtrreVKJKgkABn8tLtYnVpsV0g-BP9VeLXxYtzmWQmeSaZE3JgndWEXDDaZozmV6NVGGv1lHLGs3ZMY_EZxyJN2B5p5TLPOGeCJpyxfXIcpwmN0ozRI9IK4ZlSypnciR-T96Jco1W6hMGyMQvzho1xFlwFhW9MZZTBGh71yn9Zs3H-JUDlPCCMtnaOAYZuoz0Ma7QNTIKxc7gxLurZsDT-L7ao586b5mkRruEaOm6xRG_CrrjZobW2MBwNLqFbANpyt_Do1rqGBxdeV6Zx8A_zjBxWWAfd-vFTMrm7HXfuo_6g2-sU_cgwmTUR1yhngimV5jpjWuRYComJkKqqSp2WuUqRc0yY5LMkR45xmcaocilkorjI-Ck5_-YarfV06c0C_Xb6ez__ALy9gVg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SusTech63138.2025.11025641 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISBN | 9798331504311 |
| EISSN | 2640-6810 |
| EndPage | 6 |
| ExternalDocumentID | 11025641 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i178t-3ea7b51cc69e81e59ad57a457cffde6d9c6a33a4173b49a3a2d62ac97574c3583 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001553563800037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jun 18 06:01:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i178t-3ea7b51cc69e81e59ad57a457cffde6d9c6a33a4173b49a3a2d62ac97574c3583 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11025641 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-April-20 |
| PublicationDateYYYYMMDD | 2025-04-20 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Conference on Technologies for Sustainability (SusTech) (Online) |
| PublicationTitleAbbrev | SusTech |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003177773 |
| Score | 1.9059389 |
| Snippet | The integration of renewable energies sources into hybrid distributed generation systems presents significant challenges, particularly when predicting... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial Neural Network Optimization Artificial neural networks Biomass Electricity Genetic algorithms Hybrid power systems Mosquito Mating Swarm Optimization (MMSO) Optimization Particle swarm optimization Prediction algorithms Renewable Energies Renewable Energy Prediction Sustainable development Syngas Syngas power plant |
| Title | Advanced Optimization of Artificial Neural Networks for a Syngas Power Plant Using Bio-Inspired Optimization Algorithms: : Comparison Between PSO, GA and a Novel Mosquito Inspired Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/11025641 |
| WOSCitedRecordID | wos001553563800037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6UeNCLihh_5x08OmR0XVtuQPDHQSBBE26kazslwU3ZMPFf9K-yLQPUxBh3WbPD25K-9b32fd_7EDoXyuShyuxOFFaBZxsqeUxy5TFlsgflM65rsROboN0uGw55vyCrOy6M1tqBz3TVDl0tX6VyZo_KLk2oMhHa0tTXKQ3nZK3lgYoJhObCRWNRv8YvB7PMnk-H2McWxFUn1YWBb1IqLpJcbf_zG3ZQZcXJg_4y2uyiNZ2U0daXdoJltN9ZsdbEBIrfNttDH82i0g89s0I8F9RLSGNoTh1WyDgh2DYd7uZw4RmYbBYEDN6TR5FB34qpgVU4ysGhDKA1Tr3bxNbpf5ptTh7T6Th_es4a0ID2UugQWnNMGPQHvQu4boJIlHlDN33TE7hLs9eZWV3gD5sV9HDVuW_feIWIgzf2Kcs9rAWNiC9lyDXzNeFCESoCQmUcKx0qLkOBsQh8iqOACyzqKqwLySmhgcSE4X1UStJEHyDAYVSTsUmRuNmWMsJZEClhRjgyaVogySGq2Pkavcz7dIwWU3X0y_NjtGm9wtaG6rUTVMqnM32KNuRbPs6mZ867PgE5s9SQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6igvribeLd8-Cj1bZJ2sS3KZuKOgdT8G2kSToHs9W1E_yL_iqTrM4LiNiXhj6cFnKac5LzfedDaF8ok4cqsztRWBHPNlTymOTKY8pkDypgXPupE5uIWy12f8_bFVndcWG01g58pg_t0NXyVS5H9qjsyIQqE6EtTX2GEhL6Y7rW5EjFhEJz4aq1aODzo86osCfUEQ6whXGF9PDDxDcxFRdLmov__IolVPtk5UF7Em-W0ZTOVtDCl4aCK2it8clbEwOoftxiFb3Vq1o_3Jg14rEiX0KeQn3o0ELGDcE26nA3hwwvwOSzIKDzmvVEAW0rpwZW46gEhzOAk37uXWS2Uv_TbH3Qy4f98uGxOIZjOJ1IHcLJGBUG7c7NAZzVQWTKvKGVv-gBXOfF88isL_CHzRq6azZuT8-9SsbB6wcxKz2sRZzQQMqIaxZoyoWisSA0lmmqdKS4jATGggQxTggXWIQqCoXkMY2JxJThNTSd5ZleR4CjxJepSZK42ZgyyhlJlDAjnJhEjUi6gWp2vrpP404d3Y-p2vzl-R6aO7-9vupeXbQut9C89RBbKQr9bTRdDkd6B83Kl7JfDHedp70DZ4DX1w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Conference+on+Technologies+for+Sustainability+%28SusTech%29+%28Online%29&rft.atitle=Advanced+Optimization+of+Artificial+Neural+Networks+for+a+Syngas+Power+Plant+Using+Bio-Inspired+Optimization+Algorithms%3A+%3A+Comparison+Between+PSO%2C+GA+and+a+Novel+Mosquito+Inspired+Optimization+Algorithm&rft.au=Aguila-Leon%2C+Jesus&rft.au=Vargas-Salgado%2C+Carlos&rft.au=Vega-Gomez%2C+Carlos&rft.au=Lucero-Tenorio%2C+Miriam&rft.date=2025-04-20&rft.pub=IEEE&rft.eissn=2640-6810&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSusTech63138.2025.11025641&rft.externalDocID=11025641 |