Advanced Optimization of Artificial Neural Networks for a Syngas Power Plant Using Bio-Inspired Optimization Algorithms: : Comparison Between PSO, GA and a Novel Mosquito Inspired Optimization Algorithm

The integration of renewable energies sources into hybrid distributed generation systems presents significant challenges, particularly when predicting critical. Syngas power plants are often integrated into hybrid microgrids to produce electricity instead of fossil fuel-based backup generators. This...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE Conference on Technologies for Sustainability (SusTech) (Online) s. 1 - 6
Hlavní autori: Aguila-Leon, Jesus, Vargas-Salgado, Carlos, Vega-Gomez, Carlos, Lucero-Tenorio, Miriam
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 20.04.2025
Predmet:
ISSN:2640-6810
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The integration of renewable energies sources into hybrid distributed generation systems presents significant challenges, particularly when predicting critical. Syngas power plants are often integrated into hybrid microgrids to produce electricity instead of fossil fuel-based backup generators. This work proposes an advanced optimization of artificial neural network models applied to the prediction of key parameters for a syngas-based power plant. As part of the proposed approach, a novel Mosquito Mating Swarm Optimization (MMSO) algorithm is presented. The MMSO is compared with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) in terms statistical performance indexes and linear regression. The results show that MMSO outperforms PSO and GA in biomass and air flow parameter prediction for the syngas power plant in accuracy and stability for variable operating conditions. The improvement in parameter prediction through the MMSO contributes to the development of robust and efficient tools for the adaptable management of microgrids and hybrid distributed generation systems.
AbstractList The integration of renewable energies sources into hybrid distributed generation systems presents significant challenges, particularly when predicting critical. Syngas power plants are often integrated into hybrid microgrids to produce electricity instead of fossil fuel-based backup generators. This work proposes an advanced optimization of artificial neural network models applied to the prediction of key parameters for a syngas-based power plant. As part of the proposed approach, a novel Mosquito Mating Swarm Optimization (MMSO) algorithm is presented. The MMSO is compared with Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) in terms statistical performance indexes and linear regression. The results show that MMSO outperforms PSO and GA in biomass and air flow parameter prediction for the syngas power plant in accuracy and stability for variable operating conditions. The improvement in parameter prediction through the MMSO contributes to the development of robust and efficient tools for the adaptable management of microgrids and hybrid distributed generation systems.
Author Vega-Gomez, Carlos
Lucero-Tenorio, Miriam
Aguila-Leon, Jesus
Vargas-Salgado, Carlos
Author_xml – sequence: 1
  givenname: Jesus
  surname: Aguila-Leon
  fullname: Aguila-Leon, Jesus
  email: jesus.aguila@ieee.org
  organization: University Center of Tonala - University of Guadalajara,Department of Water and Energy Studies,Guadalajara,Mexico
– sequence: 2
  givenname: Carlos
  surname: Vargas-Salgado
  fullname: Vargas-Salgado, Carlos
  email: carvarsa@upvnet.upv.es
  organization: Universitat Politècnica de València,Department of Electrical Engineering,Valencia,Spain
– sequence: 3
  givenname: Carlos
  surname: Vega-Gomez
  fullname: Vega-Gomez, Carlos
  email: carlos.vega@cutlajomulco.udg.mx
  organization: University Center of Tlajomulco - University of Guadalajara,Division of Technological Development and Engineering,Guadalajara,Mexico
– sequence: 4
  givenname: Miriam
  surname: Lucero-Tenorio
  fullname: Lucero-Tenorio, Miriam
  email: miri.lucero.tenorio@ieee.org
  organization: Universitat Politècnica de València,Industrial Electronic Systems Group,Department of Electronic Engineering,Valencia,Spain
BookMark eNqFkE1PAjEYhKvRxC_-gYc3nl1st9vtrreVKJKgkABn8tLtYnVpsV0g-BP9VeLXxYtzmWQmeSaZE3JgndWEXDDaZozmV6NVGGv1lHLGs3ZMY_EZxyJN2B5p5TLPOGeCJpyxfXIcpwmN0ozRI9IK4ZlSypnciR-T96Jco1W6hMGyMQvzho1xFlwFhW9MZZTBGh71yn9Zs3H-JUDlPCCMtnaOAYZuoz0Ma7QNTIKxc7gxLurZsDT-L7ao586b5mkRruEaOm6xRG_CrrjZobW2MBwNLqFbANpyt_Do1rqGBxdeV6Zx8A_zjBxWWAfd-vFTMrm7HXfuo_6g2-sU_cgwmTUR1yhngimV5jpjWuRYComJkKqqSp2WuUqRc0yY5LMkR45xmcaocilkorjI-Ck5_-YarfV06c0C_Xb6ez__ALy9gVg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SusTech63138.2025.11025641
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISBN 9798331504311
EISSN 2640-6810
EndPage 6
ExternalDocumentID 11025641
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-3ea7b51cc69e81e59ad57a457cffde6d9c6a33a4173b49a3a2d62ac97574c3583
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001553563800037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jun 18 06:01:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-3ea7b51cc69e81e59ad57a457cffde6d9c6a33a4173b49a3a2d62ac97574c3583
PageCount 6
ParticipantIDs ieee_primary_11025641
PublicationCentury 2000
PublicationDate 2025-April-20
PublicationDateYYYYMMDD 2025-04-20
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-20
  day: 20
PublicationDecade 2020
PublicationTitle IEEE Conference on Technologies for Sustainability (SusTech) (Online)
PublicationTitleAbbrev SusTech
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177773
Score 1.9060453
Snippet The integration of renewable energies sources into hybrid distributed generation systems presents significant challenges, particularly when predicting...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial Neural Network Optimization
Artificial neural networks
Biomass
Electricity
Genetic algorithms
Hybrid power systems
Mosquito Mating Swarm Optimization (MMSO)
Optimization
Particle swarm optimization
Prediction algorithms
Renewable Energies
Renewable Energy Prediction
Sustainable development
Syngas
Syngas power plant
Title Advanced Optimization of Artificial Neural Networks for a Syngas Power Plant Using Bio-Inspired Optimization Algorithms: : Comparison Between PSO, GA and a Novel Mosquito Inspired Optimization Algorithm
URI https://ieeexplore.ieee.org/document/11025641
WOSCitedRecordID wos001553563800037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8qPuiLOid-cw8-Wl2aJml8m-JU0G0wBd8kTVIdbK2uneC_6F9lknXzA0TsS0oh10Cuuevd73eH0EHSwFpFWgeMCh1E2P6giDSUQcKN5jLhxAhPFL7m7XZ8fy-6FVndc2GMMR58Zo7crc_l61yNXajs2Joqa6EdTX2eczYha80CKtYQ2otUhUVxQxz3xoWLTzOCiQNxhfRoKuBbKxVvSVor_1zDKqp_cvKgO7M2a2jOZDW0_KWcYA1tnH-y1uQAqs-2WEfvzSrTDx17Qgwr6iXkKTRHHitklRBcmQ4_eFx4AdabBQm9t-xRFtB1zdTAdTgqwaMM4LSfB1eZy9P_FNscPOajfvk0LE7gBM5mjQ7hdIIJg26vcwgXTZCZtm9o569mADd58TK2pwv8IbOO7lrnt2eXQdXEIehjHpcBMZInFCvFhImxoUJqymVEuUpTbZgWiklCZIQ5SSIhiQw1C6USnPJIERqTDbSQ5ZnZRKDjmFoHhqXKqpd1RUUSm4TZCSJlCed4C9Xdfj08T-p0PEy3avuX5ztoyWmFyw2FjV20UI7GZg8tqteyX4z2vXZ9AEq11gI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ignrxteLbOXi0ummapPG2ii9c14VV8LakSaoLa6vbruBf9FeZZOv6ABF7SSlkGsg0M535vhmEdpM61irSOmBU6CDC9gdFpKEMEm40lwknRniicJO3WvHdnWhXZHXPhTHGePCZ2Xe3PpevczV0obIDa6qshXY09SkaRWF9RNcah1SsKbQXqUqL4ro46AwLF6FmBBMH4wrp_oeIb81UvC05nf_nKhZQ7ZOVB-2xvVlEEyZbQnNfCgouoZWTT96a7EP14RbL6K1R5frh2p4RjxX5EvIUGgOPFrJqCK5Qhx88MrwA68-ChM5rdi8LaLt2auB6HJXgcQZw1MuDi8xl6n-KbfTv80GvfHgsDuEQjsetDuFohAqDdud6D84aIDNt39DKX0wfrvLieWjPF_hDZg3dnp7cHJ8HVRuHoId5XAbESJ5QrBQTJsaGCqkplxHlKk21YVooJgmREeYkiYQkMtQslEpwyiNFaExW0GSWZ2YVgY5jal0YliqrYNYZFUlsEmYniJQlnOM1VHP71X0aVerofmzV-i_Pd9DM-c1Vs9u8aF1uoFmnIS5TFNY30WQ5GJotNK1eyl4x2Paa9g6LKNlJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Conference+on+Technologies+for+Sustainability+%28SusTech%29+%28Online%29&rft.atitle=Advanced+Optimization+of+Artificial+Neural+Networks+for+a+Syngas+Power+Plant+Using+Bio-Inspired+Optimization+Algorithms%3A+%3A+Comparison+Between+PSO%2C+GA+and+a+Novel+Mosquito+Inspired+Optimization+Algorithm&rft.au=Aguila-Leon%2C+Jesus&rft.au=Vargas-Salgado%2C+Carlos&rft.au=Vega-Gomez%2C+Carlos&rft.au=Lucero-Tenorio%2C+Miriam&rft.date=2025-04-20&rft.pub=IEEE&rft.eissn=2640-6810&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSusTech63138.2025.11025641&rft.externalDocID=11025641