PRNGine: Massively Parallel Pseudo-Random Number Generation and Probability Distribution Approximations on AMD AI Engines

Generating large volumes of random numbers is essential for high-performance computing applications such as Monte Carlo simulations, machine learning, and dynamic game-play. Many of these applications require random number generation within a processing pipeline. Coarse-Grained Reconfigurable Archit...

Full description

Saved in:
Bibliographic Details
Published in:2025 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) pp. 91 - 98
Main Authors: Bouaziz, Mohamed, Fahmy, Suhaib A.
Format: Conference Proceeding
Language:English
Published: IEEE 03.06.2025
Subjects:
ISSN:2995-066X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Generating large volumes of random numbers is essential for high-performance computing applications such as Monte Carlo simulations, machine learning, and dynamic game-play. Many of these applications require random number generation within a processing pipeline. Coarse-Grained Reconfigurable Architectures (CGRAs) are well-suited for this task, enabling efficient dataflow-based distribution across processing elements. This work explores efficient random number generation on AMD AI Engines (AIEs) through two execution models: a co-processor model and a standalone dataflow accelerator model. Key challenges in porting Pseudo-Random Number Generators (PRNGs) to AIEs, including the lack of support for certain operations, unsigned data types, and efficient vectorization, are identified and overcome. Additionally, the challenges of approximating a normal distribution on AIEs are analyzed and addressed. Optimized implementations of essential PRNG operations are presented, demonstrating linear complexity and enabling scalable random number generation. Performance evaluation provides insights into the suitability of both execution models for various applications.
AbstractList Generating large volumes of random numbers is essential for high-performance computing applications such as Monte Carlo simulations, machine learning, and dynamic game-play. Many of these applications require random number generation within a processing pipeline. Coarse-Grained Reconfigurable Architectures (CGRAs) are well-suited for this task, enabling efficient dataflow-based distribution across processing elements. This work explores efficient random number generation on AMD AI Engines (AIEs) through two execution models: a co-processor model and a standalone dataflow accelerator model. Key challenges in porting Pseudo-Random Number Generators (PRNGs) to AIEs, including the lack of support for certain operations, unsigned data types, and efficient vectorization, are identified and overcome. Additionally, the challenges of approximating a normal distribution on AIEs are analyzed and addressed. Optimized implementations of essential PRNG operations are presented, demonstrating linear complexity and enabling scalable random number generation. Performance evaluation provides insights into the suitability of both execution models for various applications.
Author Fahmy, Suhaib A.
Bouaziz, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Bouaziz
  fullname: Bouaziz, Mohamed
  email: mohamed.bouaziz@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST),Thuwal,Saudi Arabia
– sequence: 2
  givenname: Suhaib A.
  surname: Fahmy
  fullname: Fahmy, Suhaib A.
  organization: King Abdullah University of Science and Technology (KAUST),Thuwal,Saudi Arabia
BookMark eNotkF1PwjAYhavRRET-gTH9A8N-bF3rHQFEEsAFNXpH2u2taTI60g7j_r0TvTrJc07ej3ONLnzjAaE7SsaUEnW_LGbFy7sQKpdjRlg2JoQwdoZGKleSc5oxkXJxjgZMqSwhQnxcoVGMzhBBiWSpogPUFdvNwnl4wGvdW19Qd7jQQdc11LiIcKyaZKt91ezx5rg3EPACPATdusbjnuMiNEYbV7u2wzMX2-DM8WRODofQfLv9KRrxL1nP8GSJ5_6zXxhv0KXVdYTRvw7R2-P8dfqUrJ4Xy-lklTiayzZh1pagBfT_WFZRRnUujdVSWwrKUl4qbkyaGUl1alQlpWaGZQoYUSUnpeBDdPs31wHA7hD6i0K3o32DmSSE_wDfSmLN
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPDPSW66978.2025.00022
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331526436
EISSN 2995-066X
EndPage 98
ExternalDocumentID 11105800
Genre orig-research
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i178t-2ffcea6e331f2d121a78bfa8af1e9f13c93bb45b81a4b9d88a2b259e209c30c63
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001566005900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 01:52:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i178t-2ffcea6e331f2d121a78bfa8af1e9f13c93bb45b81a4b9d88a2b259e209c30c63
PageCount 8
ParticipantIDs ieee_primary_11105800
PublicationCentury 2000
PublicationDate 2025-June-3
PublicationDateYYYYMMDD 2025-06-03
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-3
  day: 03
PublicationDecade 2020
PublicationTitle 2025 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
PublicationTitleAbbrev IPDPSW
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib061082491
Score 1.9106641
Snippet Generating large volumes of random numbers is essential for high-performance computing applications such as Monte Carlo simulations, machine learning, and...
SourceID ieee
SourceType Publisher
StartPage 91
SubjectTerms AI Engine
CGRA
Dataflow
Engines
Generators
High performance computing
Machine learning
Monte Carlo methods
Performance evaluation
Pipelines
PRNG
Probability distribution
Random number generation
Reconfigurable architectures
Title PRNGine: Massively Parallel Pseudo-Random Number Generation and Probability Distribution Approximations on AMD AI Engines
URI https://ieeexplore.ieee.org/document/11105800
WOSCitedRecordID wos001566005900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uePCk4sTf5OC1Lmm2JvE2nNOBK2Uq7jbyEwazHesm7r83STv14sFbeZQG8tK895L3fR8A14ZTLrXVEUWWRh3f5spEaHZIrNsKNU5UIHF9omnKJhOe1WD1gIUxxoTmM3PjH8Ndvi7U2h-Vtd1_ibouw2mABqVJBdbaLh6XBjBXSuAaBYwRbw-zfvb8liSuUHKFYOwPT5AXyf0loxKiyGD_n-MfgNYPHg9m35HmEOyY_AhssnH64HLEWzhyCbDbtOYbmIml10aZw6w0a11EY5Hr4h2mQfYDVhTT3hPQ2f0XZcXSvYF9z59bS1_BnucZ_5xVoMYSesuoD3tDWJEXli3wOrh_uXuMaiGFaIYpW0WxtcqIxBCCbaxxjAVl0gomLDbcYqI4kbLTlQyLjuSaMRFLVxaZGHFFkErIMWjmRW5OAHThXWJPYGO5du9ygWOkNFK-mR8RyU5By8_bdFFxZUy3U3b2h_0c7HnXhOYrcgGaq-XaXIJd9bGalcur4OEvdt-pAA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSkRoy_7cHrpO3G1nojokKEZUGM3Eh_JiS4GQZG_nvbDtSLB2_Ly7I0fV3fe-37vg-Aa80SJpRRQYJMEkSuzZVy3-wQG7sVKhxLT-LaS9KUjkYsW4HVPRZGa-2bz_SNe_R3-aqQC3dU1rD_JWraDGcTbDWjiKAKrrVePjYRoLaYwCscMEas0c3a2fNrHNtSyZaCxB2fICeT-0tIxceRh71_jmAf1H8QeTD7jjUHYEPnh2CZDdJHmyXewr5Nge22NV3CjM-cOsoUZqVeqCIY8FwVbzD1wh-wIpl2voDW7r4oKp7uJWw7Bt2V-BVsOabxz0kFayyhs_TbsNWFFX1hWQcvD_fDu06wklIIJjih84AYIzWPdRhiQxQmmCdUGE65wZoZHEoWChE1BcU8EkxRyomwhZEmiMkQyTg8ArW8yPUxgDbAC-wobAxT9l3GMUFSIena-VEo6Amou3kbv1dsGeP1lJ3-Yb8CO51hvzfuddOnM7Dr3ORbscJzUJvPFvoCbMuP-aScXXpvfwFsNKxH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+International+Parallel+and+Distributed+Processing+Symposium+Workshops+%28IPDPSW%29&rft.atitle=PRNGine%3A+Massively+Parallel+Pseudo-Random+Number+Generation+and+Probability+Distribution+Approximations+on+AMD+AI+Engines&rft.au=Bouaziz%2C+Mohamed&rft.au=Fahmy%2C+Suhaib+A.&rft.date=2025-06-03&rft.pub=IEEE&rft.eissn=2995-066X&rft.spage=91&rft.epage=98&rft_id=info:doi/10.1109%2FIPDPSW66978.2025.00022&rft.externalDocID=11105800