Evaluating Performance and Energy Efficiency of Parallel Programming Models in Heterogeneous Computing Systems
We provide a detailed evaluation of several parallel programming models, emphasizing both performance and energy efficiency in heterogeneous computing systems. The evaluation employs a diverse array of hardware, including Intel Xeon and AMD Epyc CPUs, along with NVIDIA GPUs featuring Pascal, Turing,...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the IEEE International Symposium on Workload Characterization S. 309 - 319 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
15.09.2024
|
| Schlagworte: | |
| ISSN: | 2835-2238 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We provide a detailed evaluation of several parallel programming models, emphasizing both performance and energy efficiency in heterogeneous computing systems. The evaluation employs a diverse array of hardware, including Intel Xeon and AMD Epyc CPUs, along with NVIDIA GPUs featuring Pascal, Turing, and Ampere architectures, and an AMD GPU with Vega10 architecture. We utilize SYCL, OpenMP, CUDA, and HIP for implementing benchmarks in 11 varied application domains, offering a comprehensive perspective on the capabilities of these programming models in diverse computing environments. |
|---|---|
| ISSN: | 2835-2238 |
| DOI: | 10.1109/IISWC63097.2024.00035 |