Asymptotically Optimal Lazy Lifelong Sampling-based Algorithm for Efficient Motion Planning in Dynamic Environments

The paper introduces an asymptotically optimal lifelong sampling-based path planning algorithm that combines the merits of lifelong planning algorithms and lazy search algorithms for rapid replanning in dynamic environments where edge evaluation is expensive. By evaluating only sub-path candidates f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems s. 8861 - 8867
Hlavní autoři: Huang, Lu, Jing, Xingjian
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 14.10.2024
Témata:
ISSN:2153-0866
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper introduces an asymptotically optimal lifelong sampling-based path planning algorithm that combines the merits of lifelong planning algorithms and lazy search algorithms for rapid replanning in dynamic environments where edge evaluation is expensive. By evaluating only sub-path candidates for the optimal solution, the algorithm saves considerable evaluation time and thereby reduces the overall planning cost. It employs a novel informed rewiring cascade to efficiently repair the search tree when the underlying search graph changes. Simulation results demonstrate that the algorithm outperforms various state-of-the-art sampling-based planners in addressing both static and dynamic motion planning problems.
ISSN:2153-0866
DOI:10.1109/IROS58592.2024.10802657