Comparison of recursive and nonrecursive linearization-based algorithms for one class of nonlinear estimation problems
Two schemes of suboptimal estimation algorithms synthesized using the Bayesian approach and based on the linearization of functions describing the behavior of the estimated state vector and measurement model are compared for one class of nonlinear estimation problems. One of them is traditional, in...
Uloženo v:
| Vydáno v: | International Conference on Control, Decision and Information Technologies (Online) s. 2698 - 2703 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2024
|
| Témata: | |
| ISSN: | 2576-3555 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Two schemes of suboptimal estimation algorithms synthesized using the Bayesian approach and based on the linearization of functions describing the behavior of the estimated state vector and measurement model are compared for one class of nonlinear estimation problems. One of them is traditional, in which the estimate is found recursively with respect to measurements, and the other one, nonrecursive, involves the simultaneous use of the full set of all available measurements. The advantages and disadvantages of the analyzed algorithms are discussed and illustrated by an example. |
|---|---|
| ISSN: | 2576-3555 |
| DOI: | 10.1109/CoDIT62066.2024.10708550 |