Comparison of recursive and nonrecursive linearization-based algorithms for one class of nonlinear estimation problems

Two schemes of suboptimal estimation algorithms synthesized using the Bayesian approach and based on the linearization of functions describing the behavior of the estimated state vector and measurement model are compared for one class of nonlinear estimation problems. One of them is traditional, in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Control, Decision and Information Technologies (Online) s. 2698 - 2703
Hlavní autoři: Stepanov, Oleg A., Litvinenko, Yulia A., Isaev, Alexey M.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2024
Témata:
ISSN:2576-3555
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Two schemes of suboptimal estimation algorithms synthesized using the Bayesian approach and based on the linearization of functions describing the behavior of the estimated state vector and measurement model are compared for one class of nonlinear estimation problems. One of them is traditional, in which the estimate is found recursively with respect to measurements, and the other one, nonrecursive, involves the simultaneous use of the full set of all available measurements. The advantages and disadvantages of the analyzed algorithms are discussed and illustrated by an example.
ISSN:2576-3555
DOI:10.1109/CoDIT62066.2024.10708550