Classification of Five Control/Non-control States to Enhance Asynchronous Brain-Computer Interfaces

Discriminating EEG signals between control and non-control states is a key problem in asynchronous brain-computer interfaces, and recent studies have shown that fusion-based methods can significantly improve the classification accuracy of EEG signals. In this paper, we propose a Dempster-Shafer theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:WRC Symposium on Advanced Robotics and Automation (Online) S. 51 - 54
Hauptverfasser: Liu, Xueshuo, Zhang, Qian, Li, Jiaxin, Wang, Hantao, Zhao, Jing
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 23.08.2024
Schlagworte:
ISSN:2835-3358
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Discriminating EEG signals between control and non-control states is a key problem in asynchronous brain-computer interfaces, and recent studies have shown that fusion-based methods can significantly improve the classification accuracy of EEG signals. In this paper, we propose a Dempster-Shafer theory-based decision fusion (DST-DF) method integrating decisions from two asynchronous algorithms for improved classification accuracy. An individualized space-frequency based complex network (ISF-OCN) algorithm and an Irregular-resampling auto-spectral analysis (IRASA) algorithm were used to extract control/non-control features for classification. The DST-DF method constructed the basic probability assignment (BPA) functions for them and assigned weights considering their varied importance in decision making. The weights were optimized using a single objective Bayesian optimization method, and were assigned to the decisions of ISF-OCN and IRASA for D-S fusion. The experimental results of 10 subjects showed that the proposed method obtained higher accuracy (93.92%) by integrating the ISF-OCN (78.87%) and IRASA (91.20%) algorithms.
AbstractList Discriminating EEG signals between control and non-control states is a key problem in asynchronous brain-computer interfaces, and recent studies have shown that fusion-based methods can significantly improve the classification accuracy of EEG signals. In this paper, we propose a Dempster-Shafer theory-based decision fusion (DST-DF) method integrating decisions from two asynchronous algorithms for improved classification accuracy. An individualized space-frequency based complex network (ISF-OCN) algorithm and an Irregular-resampling auto-spectral analysis (IRASA) algorithm were used to extract control/non-control features for classification. The DST-DF method constructed the basic probability assignment (BPA) functions for them and assigned weights considering their varied importance in decision making. The weights were optimized using a single objective Bayesian optimization method, and were assigned to the decisions of ISF-OCN and IRASA for D-S fusion. The experimental results of 10 subjects showed that the proposed method obtained higher accuracy (93.92%) by integrating the ISF-OCN (78.87%) and IRASA (91.20%) algorithms.
Author Zhang, Qian
Li, Jiaxin
Wang, Hantao
Zhao, Jing
Liu, Xueshuo
Author_xml – sequence: 1
  givenname: Xueshuo
  surname: Liu
  fullname: Liu, Xueshuo
  email: 1120126113@qq.com
  organization: Yanshan University,Department of Electrical Engineering,Qinhuangdao,China,066004
– sequence: 2
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  email: zhangqian0321@163.com
  organization: Yanshan University,Department of Electrical Engineering,Qinhuangdao,China,066004
– sequence: 3
  givenname: Jiaxin
  surname: Li
  fullname: Li, Jiaxin
  email: ljx0508lim@163.com
  organization: Yanshan University,Department of Electrical Engineering,Qinhuangdao,China,066004
– sequence: 4
  givenname: Hantao
  surname: Wang
  fullname: Wang, Hantao
  email: 1758400205@qq.com
  organization: Yanshan University,Department of Electrical Engineering,Qinhuangdao,China,066004
– sequence: 5
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
  email: zhaoj0104@ysu.edu.cn
  organization: Yanshan University,Department of Electrical Engineering,Qinhuangdao,China,066004
BookMark eNo1kM1OAjEYRavRRETewEXjfqCd_i_HCSgJ0QQ0LkmnfA010JJpMeHtJUE3957cxVnce3QTUwSEnigZU0rM5GvZrpplIzmValyTmo8pkVoozq_QyCijGaOCSErINRrUmomKMaHv0Cjnb0IIqylVtRgg1-5szsEHZ0tIESePZ-EHcJti6dNu8pZi5S6MV8UWyLgkPI1bGx3gJp-i2_YppmPGz70NsWrT_nAs0ON5PKe3DvIDuvV2l2H010P0OZt-tK_V4v1l3jaLKlAlS7XRneRKU02E3xDjlAAtrGWKs_NC9KbupHUStAHwlHfWdNJ3nVHcUa6pZ0P0ePEGAFgf-rC3_Wn9_wv7BZ6lW6I
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WRCSARA64167.2024.10685744
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331506100
EISSN 2835-3358
EndPage 54
ExternalDocumentID 10685744
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-d8b64781805fd09c75e85aa374305f08d2b6ac6e89eef14ba9b6fbb974c1481f3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001327761400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue May 06 03:33:11 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-d8b64781805fd09c75e85aa374305f08d2b6ac6e89eef14ba9b6fbb974c1481f3
PageCount 4
ParticipantIDs ieee_primary_10685744
PublicationCentury 2000
PublicationDate 2024-Aug.-23
PublicationDateYYYYMMDD 2024-08-23
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-23
  day: 23
PublicationDecade 2020
PublicationTitle WRC Symposium on Advanced Robotics and Automation (Online)
PublicationTitleAbbrev WRC SARA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211725
Score 1.8803577
Snippet Discriminating EEG signals between control and non-control states is a key problem in asynchronous brain-computer interfaces, and recent studies have shown...
SourceID ieee
SourceType Publisher
StartPage 51
SubjectTerms Accuracy
Brain-computer interfaces
Complex networks
Decision making
Electroencephalography
Feature extraction
Optimization methods
Title Classification of Five Control/Non-control States to Enhance Asynchronous Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/10685744
WOSCitedRecordID wos001327761400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcAEiCK-5YHVbeI4_hhL1YqpqgqIbpXtnEWXBLVpJf49tpMWMTAgZbAyRNGd_PHO791D6DGVRisoJOGKM8K0LohMbUoybqiVuc6MMdFsQkyncrFQs1asHrUwABDJZ9APw3iXX1R2G0plfoZzmQvGOqgjBG_EWoeCSuahjKB521g0TdTgfT56Gc6H3J85hEeClPX3H_hlpRJ3ksnpP__hDPV-NHl4dthtztERlBfIRk_LwPaJAcaVwxO_fOFRQ0AfTKuStGR03BwrcV3hcfkRco2Hm6_Shua4Hv3jp-AVQfYmDzhWCl3ga_XQ22T8OnomrW0CWaWC16SQJgpIZZK7IlFW5OCDrjMRunu5RBbUcG05SAXgUuZzZbgzxgML67FR6rJL1C2rEq4QZlYLCYWhOgGW-8lOLdBEOe4f4ZHUNeqFCC0_m84Yy31wbv54f4tOQh5CTZZmd6hbr7dwj47trl5t1g8xn98H1aKa
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA06BT2pOPG3OXjN1qZpkh7r2Jg4y5gTdxtJmuAurWyd4H9vknYTDx6EHkIPpXwf-fG-vPc9AO5DLkWic45oQgkiQuSIhypEEZVY8VhEUkpvNsGyjM9mybgRq3stjNbak890xw39XX5eqrUrldkZTnnMCNkFezEhOKjlWtuSSmTBDMNx01o0DJLu26T3kk5Sak8dzGJBTDqbT_wyU_F7yeDon39xDNo_qjw43u43J2BHF6dAeVdLx_fxIYalgQO7gMFeTUHvZmWBGjo6rA-WsCphv3h32Ybp6qtQrj2uxf_wwblFoI3NA_S1QuMYW23wOuhPe0PUGCegRchohXIuvYSUB7HJg0SxWNuwi4i5_l4m4DmWVCiqeaK1CYnNlqRGSgstlEVHoYnOQKsoC30OIFGCcZ1LLAJNYjvdsdI4SAy1D7NY6gK0XYTmH3VvjPkmOJd_vL8DB8Pp82g-esyersChy4mr0OLoGrSq5VrfgH31WS1Wy1uf22-rFaXh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=WRC+Symposium+on+Advanced+Robotics+and+Automation+%28Online%29&rft.atitle=Classification+of+Five+Control%2FNon-control+States+to+Enhance+Asynchronous+Brain-Computer+Interfaces&rft.au=Liu%2C+Xueshuo&rft.au=Zhang%2C+Qian&rft.au=Li%2C+Jiaxin&rft.au=Wang%2C+Hantao&rft.date=2024-08-23&rft.pub=IEEE&rft.eissn=2835-3358&rft.spage=51&rft.epage=54&rft_id=info:doi/10.1109%2FWRCSARA64167.2024.10685744&rft.externalDocID=10685744