Classification of Five Control/Non-control States to Enhance Asynchronous Brain-Computer Interfaces
Discriminating EEG signals between control and non-control states is a key problem in asynchronous brain-computer interfaces, and recent studies have shown that fusion-based methods can significantly improve the classification accuracy of EEG signals. In this paper, we propose a Dempster-Shafer theo...
Gespeichert in:
| Veröffentlicht in: | WRC Symposium on Advanced Robotics and Automation (Online) S. 51 - 54 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
23.08.2024
|
| Schlagworte: | |
| ISSN: | 2835-3358 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Discriminating EEG signals between control and non-control states is a key problem in asynchronous brain-computer interfaces, and recent studies have shown that fusion-based methods can significantly improve the classification accuracy of EEG signals. In this paper, we propose a Dempster-Shafer theory-based decision fusion (DST-DF) method integrating decisions from two asynchronous algorithms for improved classification accuracy. An individualized space-frequency based complex network (ISF-OCN) algorithm and an Irregular-resampling auto-spectral analysis (IRASA) algorithm were used to extract control/non-control features for classification. The DST-DF method constructed the basic probability assignment (BPA) functions for them and assigned weights considering their varied importance in decision making. The weights were optimized using a single objective Bayesian optimization method, and were assigned to the decisions of ISF-OCN and IRASA for D-S fusion. The experimental results of 10 subjects showed that the proposed method obtained higher accuracy (93.92%) by integrating the ISF-OCN (78.87%) and IRASA (91.20%) algorithms. |
|---|---|
| AbstractList | Discriminating EEG signals between control and non-control states is a key problem in asynchronous brain-computer interfaces, and recent studies have shown that fusion-based methods can significantly improve the classification accuracy of EEG signals. In this paper, we propose a Dempster-Shafer theory-based decision fusion (DST-DF) method integrating decisions from two asynchronous algorithms for improved classification accuracy. An individualized space-frequency based complex network (ISF-OCN) algorithm and an Irregular-resampling auto-spectral analysis (IRASA) algorithm were used to extract control/non-control features for classification. The DST-DF method constructed the basic probability assignment (BPA) functions for them and assigned weights considering their varied importance in decision making. The weights were optimized using a single objective Bayesian optimization method, and were assigned to the decisions of ISF-OCN and IRASA for D-S fusion. The experimental results of 10 subjects showed that the proposed method obtained higher accuracy (93.92%) by integrating the ISF-OCN (78.87%) and IRASA (91.20%) algorithms. |
| Author | Zhang, Qian Li, Jiaxin Wang, Hantao Zhao, Jing Liu, Xueshuo |
| Author_xml | – sequence: 1 givenname: Xueshuo surname: Liu fullname: Liu, Xueshuo email: 1120126113@qq.com organization: Yanshan University,Department of Electrical Engineering,Qinhuangdao,China,066004 – sequence: 2 givenname: Qian surname: Zhang fullname: Zhang, Qian email: zhangqian0321@163.com organization: Yanshan University,Department of Electrical Engineering,Qinhuangdao,China,066004 – sequence: 3 givenname: Jiaxin surname: Li fullname: Li, Jiaxin email: ljx0508lim@163.com organization: Yanshan University,Department of Electrical Engineering,Qinhuangdao,China,066004 – sequence: 4 givenname: Hantao surname: Wang fullname: Wang, Hantao email: 1758400205@qq.com organization: Yanshan University,Department of Electrical Engineering,Qinhuangdao,China,066004 – sequence: 5 givenname: Jing surname: Zhao fullname: Zhao, Jing email: zhaoj0104@ysu.edu.cn organization: Yanshan University,Department of Electrical Engineering,Qinhuangdao,China,066004 |
| BookMark | eNo1kM1OAjEYRavRRETewEXjfqCd_i_HCSgJ0QQ0LkmnfA010JJpMeHtJUE3957cxVnce3QTUwSEnigZU0rM5GvZrpplIzmValyTmo8pkVoozq_QyCijGaOCSErINRrUmomKMaHv0Cjnb0IIqylVtRgg1-5szsEHZ0tIESePZ-EHcJti6dNu8pZi5S6MV8UWyLgkPI1bGx3gJp-i2_YppmPGz70NsWrT_nAs0ON5PKe3DvIDuvV2l2H010P0OZt-tK_V4v1l3jaLKlAlS7XRneRKU02E3xDjlAAtrGWKs_NC9KbupHUStAHwlHfWdNJ3nVHcUa6pZ0P0ePEGAFgf-rC3_Wn9_wv7BZ6lW6I |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WRCSARA64167.2024.10685744 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331506100 |
| EISSN | 2835-3358 |
| EndPage | 54 |
| ExternalDocumentID | 10685744 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i176t-d8b64781805fd09c75e85aa374305f08d2b6ac6e89eef14ba9b6fbb974c1481f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001327761400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Tue May 06 03:33:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-d8b64781805fd09c75e85aa374305f08d2b6ac6e89eef14ba9b6fbb974c1481f3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_10685744 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Aug.-23 |
| PublicationDateYYYYMMDD | 2024-08-23 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug.-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | WRC Symposium on Advanced Robotics and Automation (Online) |
| PublicationTitleAbbrev | WRC SARA |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211725 |
| Score | 1.880612 |
| Snippet | Discriminating EEG signals between control and non-control states is a key problem in asynchronous brain-computer interfaces, and recent studies have shown... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 51 |
| SubjectTerms | Accuracy Brain-computer interfaces Complex networks Decision making Electroencephalography Feature extraction Optimization methods |
| Title | Classification of Five Control/Non-control States to Enhance Asynchronous Brain-Computer Interfaces |
| URI | https://ieeexplore.ieee.org/document/10685744 |
| WOSCitedRecordID | wos001327761400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sDq1kn8OZaqFQOqqvLVrYqds-iSoDZF4t9jO2kRAwNblCGy7hT73vm9ewjdsZTmKmNAJFhHGC8oMUIbwjXT4dooz6IP2eujnEzUfK6nrVg9amEAIJLPoBce411-UdlNaJX5P1woLhnbR_tSikastWuoZB7KyJS3g0UTqvtvs-HTYDYQvuaQHgmmrLf9wC8rlXiSjI_-uYZj1P3R5OHp7rQ5QXtQniIbPS0D2ycGGFcOj_32hYcNAb0_qUrSktFxU1biusKj8j3kGg_WX6UNw3E9-sf3wSuCbE0ecOwUusDX6qKX8eh5-EBa2wSyTKSoSaFMFJAqyl1BtZUcFM_zTIbpXo6qIjUitwKUBnAJM7k2whnjgYX12Chx2RnqlFUJ5wgzRZ2wQe2qPE6xuQJnlC-6qAa_OSX8AnVDhBYfzWSMxTY4l3-8v0KHIQ-hJ5tm16hTrzZwgw7sZ71cr25jPr8B8lKhQQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMEEiCK-8cDq1kn8OZaqFYhSVaVAtyp2bNElQW2KxL_HdtIiBga2KEMS3Sn2vfN79wC4JTFORUIM4kZbRGiGkWJSISqJ9MdGaRJ8yF4HfDgU06kc1WL1oIUxxgTymWn5y3CWnxV65Vtl7g9ngnJCtsEOJe4tlVxr01JJHJjhMa1Hi0ZYtt_G3efOuMNc1cEdFoxJa_2IX2YqYS_pH_zzKw5B80eVB0eb_eYIbJn8GOjgaun5PiHEsLCw7xYw2K0o6O1hkaOajg6rwhKWBezl7z7bsLP8yrUfj-vwP7zzbhFobfMAQ6_QesZWE7z0e5PuPaqNE9A84qxEmVBBQiowtRmWmlMjaJom3M_3slhksWKpZkZIY2xEVCoVs0o5aKEdOopscgIaeZGbUwCJwJZpr3cVDqnoVBirhCu7sDRueYroGWj6CM0-qtkYs3Vwzv-4fwP27idPg9ngYfh4AfZ9TnyHNk4uQaNcrMwV2NWf5Xy5uA65_QaDs6SI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=WRC+Symposium+on+Advanced+Robotics+and+Automation+%28Online%29&rft.atitle=Classification+of+Five+Control%2FNon-control+States+to+Enhance+Asynchronous+Brain-Computer+Interfaces&rft.au=Liu%2C+Xueshuo&rft.au=Zhang%2C+Qian&rft.au=Li%2C+Jiaxin&rft.au=Wang%2C+Hantao&rft.date=2024-08-23&rft.pub=IEEE&rft.eissn=2835-3358&rft.spage=51&rft.epage=54&rft_id=info:doi/10.1109%2FWRCSARA64167.2024.10685744&rft.externalDocID=10685744 |