Realization of Low-Code Algorithm for Steel Energy Consumption Prediction

The steel industry is one of the world's highest energy consumption. It is important to improve its energy efficiency. Energy consumption prediction can help steel industry better plan and manage energy use. Based on a low-code development platform, multiple prediction algorithm models are used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE International Conference on Computer Communication and the Internet (Online) S. 206 - 210
Hauptverfasser: Ji, Wanzhou, Bian, Yunqi, Cai, Hongxia
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 14.06.2024
Schlagworte:
ISSN:2833-2350
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The steel industry is one of the world's highest energy consumption. It is important to improve its energy efficiency. Energy consumption prediction can help steel industry better plan and manage energy use. Based on a low-code development platform, multiple prediction algorithm models are used to predict the energy consumption. A low-code algorithmic platform support is provided for the steel industry to achieve energy saving and efficiency improvement.
ISSN:2833-2350
DOI:10.1109/ICCCI62159.2024.10674628