Investigating and Mitigating the Side Effects of Noisy Views for Self-Supervised Clustering Algorithms in Practical Multi-View Scenarios

Multi-view clustering (MVC) aims at exploring category structures among multi-view data in self-supervised manners. Multiple views provide more information than single views and thus existing MVC methods can achieve satisfactory performance. However, their performance might seriously degenerate when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) S. 22957 - 22966
Hauptverfasser: Xu, Jie, Ren, Yazhou, Wang, Xiaolong, Feng, Lei, Zhang, Zheng, Niu, Gang, Zhu, Xiaofeng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 16.06.2024
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-view clustering (MVC) aims at exploring category structures among multi-view data in self-supervised manners. Multiple views provide more information than single views and thus existing MVC methods can achieve satisfactory performance. However, their performance might seriously degenerate when the views are noisy in practical multi-view scenarios. In this paper, we formally investigate the drawback of noisy views and then propose a theoretically grounded deep MVC method (namely MVCAN) to address this issue. Specifically, we propose a novel MVC objective that enables un-shared parameters and inconsistent clustering predictions across multiple views to reduce the side effects of noisy views. Furthermore, a two-level multi-view iterative optimization is designed to generate robust learning targets for refining individual views' representation learning. Theoretical analysis reveals that MVCAN works by achieving the multi-view consistency, complementarity, and noise robustness. Finally, experiments on extensive public datasets demonstrate that MVCAN outperforms state-of-the-art methods and is robust against the existence of noisy views.
ISSN:1063-6919
DOI:10.1109/CVPR52733.2024.02166