SPOT: Structure Patching and Overlap Tweaking for Effective Pipelining in Privacy-Preserving MLaaS with Tiny Clients
Machine Learning as a Service (MLaaS) has paved the way for numerous applications for resource-limited clients, such as IoT/mobile users. However, it raises a great challenge for privacy, including both the data privacy of clients and model privacy of the server. While there have been extensive stud...
Uložené v:
| Vydané v: | Proceedings of the International Conference on Distributed Computing Systems s. 1318 - 1329 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
23.07.2024
|
| Predmet: | |
| ISSN: | 2575-8411 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!