Robust Average Consensus under Byzantine Attacks

We study the problem of average consensus in multi-agent systems where some of the agents may malfunction. The object of robust average consensus is for non-faulty agents to converge to the average value of their initial values despite the erroneous effects from adversarial agents. To this end, we p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the IEEE Conference on Decision & Control s. 3839 - 3844
Hlavní autoři: Yuan, Liwei, Ishii, Hideaki, Wang, Yaonan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.12.2024
Témata:
ISSN:2576-2370
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the problem of average consensus in multi-agent systems where some of the agents may malfunction. The object of robust average consensus is for non-faulty agents to converge to the average value of their initial values despite the erroneous effects from adversarial agents. To this end, we propose a surplus-based consensus algorithm that can achieve robust average consensus under Byzantine attacks in the multi-agent networks with directed topologies. The key idea is to equip each normal agent with a running-sum variable so that it can record the effects from/to neighbors across iterations. Moreover, compared to the existing secure broadcast and retrieval approach where each agent keeps track of the initial values of all agents in the network, our algorithm saves massive storage especially for large-scale networks as each agent only requires the values and the correct detection of neighbors. Finally, numerical examples are given for verifying the effectiveness of our algorithm.
ISSN:2576-2370
DOI:10.1109/CDC56724.2024.10886555