Stochastic Integration Based Estimator: Robust Design and Stone Soup Implementation

This paper deals with state estimation of nonlinear stochastic dynamic models. In particular, the stochastic integration rule, which provides asymptotically unbiased estimates of the moments of nonlinearly transformed Gaussian random variables, is reviewed together with the recently introduced stoch...

Full description

Saved in:
Bibliographic Details
Published in:2024 27th International Conference on Information Fusion (FUSION) pp. 1 - 8
Main Authors: Dunik, Jindrich, Matousek, Jakub, Straka, Ondrej, Blasch, Erik, Hiles, John, Niu, Ruixin
Format: Conference Proceeding
Language:English
Published: ISIF 08.07.2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper deals with state estimation of nonlinear stochastic dynamic models. In particular, the stochastic integration rule, which provides asymptotically unbiased estimates of the moments of nonlinearly transformed Gaussian random variables, is reviewed together with the recently introduced stochastic integration filter (SIF). Using SIF, the respective multi-step prediction and smoothing algorithms are developed in full and efficient square-root form. The stochastic-integration-rule-based algorithms are implemented in Python (within the Stone Soup framework) and in MATLAB® and are numerically evaluated and compared with the well-known unscented and extended Kalman filters using the Stone Soup defined tracking scenario.
AbstractList This paper deals with state estimation of nonlinear stochastic dynamic models. In particular, the stochastic integration rule, which provides asymptotically unbiased estimates of the moments of nonlinearly transformed Gaussian random variables, is reviewed together with the recently introduced stochastic integration filter (SIF). Using SIF, the respective multi-step prediction and smoothing algorithms are developed in full and efficient square-root form. The stochastic-integration-rule-based algorithms are implemented in Python (within the Stone Soup framework) and in MATLAB® and are numerically evaluated and compared with the well-known unscented and extended Kalman filters using the Stone Soup defined tracking scenario.
Author Niu, Ruixin
Blasch, Erik
Matousek, Jakub
Straka, Ondrej
Dunik, Jindrich
Hiles, John
Author_xml – sequence: 1
  givenname: Jindrich
  surname: Dunik
  fullname: Dunik, Jindrich
  email: dunikj@kky.zcu.cz
  organization: Univ. of West Bohemia Univerzitní 8,Dept. of Cyber.,Pilsen,Czech Rep.,306 14
– sequence: 2
  givenname: Jakub
  surname: Matousek
  fullname: Matousek, Jakub
  email: matoujak@kky.zcu.cz
  organization: Univ. of West Bohemia Univerzitní 8,Dept. of Cyber.,Pilsen,Czech Rep.,306 14
– sequence: 3
  givenname: Ondrej
  surname: Straka
  fullname: Straka, Ondrej
  email: straka30@kky.zcu.cz
  organization: Univ. of West Bohemia Univerzitní 8,Dept. of Cyber.,Pilsen,Czech Rep.,306 14
– sequence: 4
  givenname: Erik
  surname: Blasch
  fullname: Blasch, Erik
  email: erik.blasch@gmail.com
  organization: MOVEJ Analytics,Fairborn,OH,USA
– sequence: 5
  givenname: John
  surname: Hiles
  fullname: Hiles, John
  email: hilesj@vcu.edu
  organization: Virginia Commonwealth University,Dept. of ECE
– sequence: 6
  givenname: Ruixin
  surname: Niu
  fullname: Niu, Ruixin
  email: rniu@vcu.edu
  organization: Virginia Commonwealth University,Dept. of ECE
BookMark eNo1j01Lw0AURUfQhdb-AxeD-9SZzOdzp7XVQLFg7LpMkjc10MyEZLrw3xuqri5cOJdzb8hliAEJuedskQvg8LDelcX2XQFYu8hZLhecGaal0RdkDsZyI4yRYDRck7JMsf5yY2prWoSEh8GlNgb67EZs6GrqO5fi8Eg_YnUaE33BsT0E6kJDJzIgLeOpp0XXH7HDkM7wLbny7jji_C9nZLdefS7fss32tVg-bbKWG50yBc5bBzxvKuUYag71pCaZrpjwEhqra-crxXNhkVtZq8ZILb1UXjDvBYoZufvdbRFx3w-T6vC9__8qfgAssFAM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/FUSION59988.2024.10706476
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781737749769
1737749769
EndPage 8
ExternalDocumentID 10706476
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i176t-59af8a912db5a0e619c817406b03f49d86cafb51238e184c5d7464f45f30ff3e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001334560000204&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Oct 16 05:58:50 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-59af8a912db5a0e619c817406b03f49d86cafb51238e184c5d7464f45f30ff3e3
PageCount 8
ParticipantIDs ieee_primary_10706476
PublicationCentury 2000
PublicationDate 2024-July-8
PublicationDateYYYYMMDD 2024-07-08
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-8
  day: 08
PublicationDecade 2020
PublicationTitle 2024 27th International Conference on Information Fusion (FUSION)
PublicationTitleAbbrev FUSION
PublicationYear 2024
Publisher ISIF
Publisher_xml – name: ISIF
Score 1.8756381
Snippet This paper deals with state estimation of nonlinear stochastic dynamic models. In particular, the stochastic integration rule, which provides asymptotically...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Filtering
Filtering algorithms
Heuristic algorithms
Kalman filters
MATLAB
Nonlinear systems
Prediction
Prediction algorithms
Random variables
Smoothing
Smoothing methods
State estimation
Stochastic integration rule
Stochastic processes
Stone Soup
Title Stochastic Integration Based Estimator: Robust Design and Stone Soup Implementation
URI https://ieeexplore.ieee.org/document/10706476
WOSCitedRecordID wos001334560000204&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXhN3d28PapdFKQU10JvJZsH9tDd0u76-03SreLBg7cwEAYmZCZfMt8XAG6FYVynUiGfgAUiMqVIZgojJ71VGCuIjpL5r3w8FrOZnHRk9ciFsdbG5jM7DMP4lm9q3YarMr_DeeBGsh7occ62ZK2tkGiGZSrv8mlIQNQjiNC0lZHhbsKvr1Ni5cgP_-nzCAx-OHhw8l1djsGerU5AUTS1_lBBWxm-dEIPPrDwwdciA0fevgwg-h6-1WW7aeBT7M-AqjIwqm7Dom5XMCoCLzvSUTUA03z0_viMum8R0CLlrEFUKieUTDNTUpVYj4C08LgiYWWCHZFGMK1c6Qs5FtbjN00NJ4w4Qh1OnMMWn4J-5V2eAWiEdNTJBJc2KAEawbHGzKb-kMa00eQcDEJE5qut8sV8F4yLP-yX4CDEPbaziivQb9atvQb7-rNZbNY3cb2-ACYmmIM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTfSkRoxve_Ba3N0-tvWoQiAiIQIJN9LtI3Jgl8Cuv9-2LBoPHrw1kzRNZtJOv3a-bwC455qlKhYSuQOYIyJiikQiMbLCWbk2nKggmd9PBwM-nYphTVYPXBhjTCg-My0_DH_5ulCVfypzOzz13Ei2C_YoIUm0oWttpEQTLGLx0Jn4I4g6DOHLthLS2k751Twl5I7O0T9XPQbNHxYeHH7nlxOwY_JTMBqVhfqQXl0Z9mqpB-da-OSykYZtZ194GP0I34usWpfwJVRoQJlrGHS34aioljBoAi9q2lHeBJNOe_zcRXVjBDSPU1YiKqTlUsSJzqiMjMNAijtkEbEswpYIzZmSNnOpHHPjEJyiOiWMWEItjqzFBp-BRu6WPAdQc2GpFRHOjNcC1DzFCjMTu2saU1qRC9D0HpktN9oXs60zLv-w34GD7vitP-v3Bq9X4NDHIBS38mvQKFeVuQH76rOcr1e3IXZfRBKbyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+27th+International+Conference+on+Information+Fusion+%28FUSION%29&rft.atitle=Stochastic+Integration+Based+Estimator%3A+Robust+Design+and+Stone+Soup+Implementation&rft.au=Dunik%2C+Jindrich&rft.au=Matousek%2C+Jakub&rft.au=Straka%2C+Ondrej&rft.au=Blasch%2C+Erik&rft.date=2024-07-08&rft.pub=ISIF&rft.spage=1&rft.epage=8&rft_id=info:doi/10.23919%2FFUSION59988.2024.10706476&rft.externalDocID=10706476