WALT3D: Generating Realistic Training Data from Time-Lapse Imagery for Reconstructing Dynamic Objects Under Occlusion
Current methods for 2D and 3D object understanding struggle with severe occlusions in busy urban environments, partly due to the lack of large-scale labeled ground-truth annotations for learning occlusion. In this work, we introduce a novel framework for automatically generating a large, realistic d...
Uložené v:
| Vydané v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 9514 - 9524 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
16.06.2024
|
| Predmet: | |
| ISSN: | 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!