InstanceCut: From Edges to Instances with MultiCut
This work addresses the task of instance-aware semantic segmentation. Our key motivation is to design a simple method with a new modelling-paradigm, which therefore has a different trade-off between advantages and disadvantages compared to known approaches. Our approach, we term InstanceCut, represe...
Uložené v:
| Vydané v: | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 7322 - 7331 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.07.2017
|
| Predmet: | |
| ISSN: | 1063-6919, 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This work addresses the task of instance-aware semantic segmentation. Our key motivation is to design a simple method with a new modelling-paradigm, which therefore has a different trade-off between advantages and disadvantages compared to known approaches. Our approach, we term InstanceCut, represents the problem by two output modalities: (i) an instance-agnostic semantic segmentation and (ii) all instance-boundaries. The former is computed from a standard convolutional neural network for semantic segmentation, and the latter is derived from a new instance-aware edge detection model. To reason globally about the optimal partitioning of an image into instances, we combine these two modalities into a novel MultiCut formulation. We evaluate our approach on the challenging CityScapes dataset. Despite the conceptual simplicity of our approach, we achieve the best result among all published methods, and perform particularly well for rare object classes. |
|---|---|
| AbstractList | This work addresses the task of instance-aware semantic segmentation. Our key motivation is to design a simple method with a new modelling-paradigm, which therefore has a different trade-off between advantages and disadvantages compared to known approaches. Our approach, we term InstanceCut, represents the problem by two output modalities: (i) an instance-agnostic semantic segmentation and (ii) all instance-boundaries. The former is computed from a standard convolutional neural network for semantic segmentation, and the latter is derived from a new instance-aware edge detection model. To reason globally about the optimal partitioning of an image into instances, we combine these two modalities into a novel MultiCut formulation. We evaluate our approach on the challenging CityScapes dataset. Despite the conceptual simplicity of our approach, we achieve the best result among all published methods, and perform particularly well for rare object classes. |
| Author | Kirillov, Alexander Levinkov, Evgeny Andres, Bjoern Rother, Carsten Savchynskyy, Bogdan |
| Author_xml | – sequence: 1 givenname: Alexander surname: Kirillov fullname: Kirillov, Alexander email: Alexander.Kirillov@tu-dresden.de organization: Tech. Univ. Dresden, Dresden, Germany – sequence: 2 givenname: Evgeny surname: Levinkov fullname: Levinkov, Evgeny email: Levinkov@mpi-inf.mpg.de organization: MPI for Inf., Saarbrucken, Germany – sequence: 3 givenname: Bjoern surname: Andres fullname: Andres, Bjoern email: Andres@mpi-inf.mpg.de organization: MPI for Inf., Saarbrucken, Germany – sequence: 4 givenname: Bogdan surname: Savchynskyy fullname: Savchynskyy, Bogdan email: Bogdan.Savchynskyy@tu-dresden.de organization: Tech. Univ. Dresden, Dresden, Germany – sequence: 5 givenname: Carsten surname: Rother fullname: Rother, Carsten email: Carsten.Rother@tu-dresden.de organization: Tech. Univ. Dresden, Dresden, Germany |
| BookMark | eNpNjk1Lw0AYhFepYFM9evKyfyDpu99ZbxJaLVQUUa9lk31XI20i2S3Sf29AhZ5mYJ4ZJiOTru-QkCsGBWNg59Xb03PBgZnCGHlCMqZEqUEqI0_JlIEWubbMTo78Ocli_ATgwnCYEr7qYnJdg9U-3dDl0O_owr9jpKmn_1Gk3236oA_7bWpH7IKcBbeNePmnM_K6XLxU9_n68W5V3a7zlhmV8hCcM4J7WzvGS-HR6LrWKFTTAKraYii9xhBQKSm9VE5JZccKNs54QBAzcv272yLi5mtod244bEo2fldG_ACd2Edt |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2017.774 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 1538604574 9781538604571 |
| EISSN | 1063-6919 |
| EndPage | 7331 |
| ExternalDocumentID | 8100257 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-i175t-ffaa732d9ba1283de76bb6e35cc0e5b9ef8d6effe5544d45a5459aa7eca7d0e03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 174 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418371407045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Wed Aug 27 02:33:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-ffaa732d9ba1283de76bb6e35cc0e5b9ef8d6effe5544d45a5459aa7eca7d0e03 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_8100257 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-July |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023720 ssj0003211698 |
| Score | 2.5152166 |
| Snippet | This work addresses the task of instance-aware semantic segmentation. Our key motivation is to design a simple method with a new modelling-paradigm, which... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 7322 |
| SubjectTerms | Automobiles Image edge detection Image segmentation Pipelines Proposals Semantics |
| Title | InstanceCut: From Edges to Instances with MultiCut |
| URI | https://ieeexplore.ieee.org/document/8100257 |
| WOSCitedRecordID | wos000418371407045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b8IwED0B6tCJtlD1Wx46NhDixI67IlC7IFS1FRvyx1liKKkg8PtrOyF06NIp1sWRoouse7l79w7gUVlp0Y4wMgJZlErMIpV4IciciUTnIqa6GjbBZ7N8sRDzFjw1vTCIGMhnOPDLUMs3hd75VNkw93qhGW9Dm3Ne9Wo1-RTq_mSYaCoIiZ--EiqdjEZMjMRRX3M4_py_eVIXH3DP8_s1VSUElWn3f69zBv1jdx6ZN3HnHFq4voBuDSdJfVi3znSY2HCw9SB5DWhQ43hXPpPppvgiE6_yQMqCHG5tic_NktCZ67b14WM6eR-_RPXUhGjloEAZWSslp4kRSrrYQw1yphRDmmkdY6YE2twwTxZxQCI1aSYdhhLuEdSSmxhjegmddbHGKyAxV8YatEmcq9RdFboTjFIwdMAitXgNPe-V5XcljLGsHXLzt_kWTr3TK67rHXTKzQ7v4UTvy9V28xC-5g-B9p9o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmugJFYxve_DowrKPduuVQCAiIQYNN9LHNOEga2Dx99vuLosHL552M90mmzbNfJ355huAR2mEQdNFT3OkXiQw9mTghCATygOVcD9URbMJNpkk8zmf1uCpqoVBxJx8hm33mufydaq2LlTWSZxeaMwO4DCOoqBbVGtVEZXQ3mUor3IIgeu_kuc6aehR3uV7hc1O72P65mhdrM0c0-9XX5XcrQwa__uhU2jt6_PItPI8Z1DD1Tk0SkBJyuO6saZdz4adrQnBKMeDCnvb7JkM1ukn6TudB5KlZDe0IS46S_LaXPtZC94H_Vlv6JV9E7ylBQOZZ4wQLAw0l8J6n1Ajo1JSDGOlfIwlR5No6ugiFkpEOoqFRVHcTkElmPbRDy-gvkpXeAnEZ1IbjSbwExnZp0R7hlFwihZaRAavoOlWZfFVSGMsygW5_tv8AMfD2et4MR5NXm7gxG1AwXy9hXq23uIdHKnvbLlZ3-c7-wP-CKKv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=InstanceCut%3A+From+Edges+to+Instances+with+MultiCut&rft.au=Kirillov%2C+Alexander&rft.au=Levinkov%2C+Evgeny&rft.au=Andres%2C+Bjoern&rft.au=Savchynskyy%2C+Bogdan&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=7322&rft.epage=7331&rft_id=info:doi/10.1109%2FCVPR.2017.774&rft.externalDocID=8100257 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |