Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) as new algorithm with integrating feature extraction and classification for Arrhythmia heartbeats classification

Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) that integrated feature extraction and classification for the automatic classification of heartbeat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) S. 150 - 155
Hauptverfasser: Imah, E. M., Jatmiko, W., Basaruddin, T.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2012
Schlagworte:
ISBN:9781467317139, 1467317136
ISSN:1062-922X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) that integrated feature extraction and classification for the automatic classification of heartbeats in an ECG signal. Since this task has specific characteristics such as, inconsistency optimization on feature extraction and classification, unclassifiable beats and a strong class unbalance, so in this study we proposed new algorithm to handle the problems. The algorithm will be evaluated on real ECG signals from the MIT arrhythmia database. The Experiments show that the proposed method can improve the accuracy of classification better than SVM or back-propagation NN and also able to handle some problems of heartbeat classification: unbalance class, inconsistency between feature extraction and classification and detecting unknown beat on testing phase.
AbstractList Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) that integrated feature extraction and classification for the automatic classification of heartbeats in an ECG signal. Since this task has specific characteristics such as, inconsistency optimization on feature extraction and classification, unclassifiable beats and a strong class unbalance, so in this study we proposed new algorithm to handle the problems. The algorithm will be evaluated on real ECG signals from the MIT arrhythmia database. The Experiments show that the proposed method can improve the accuracy of classification better than SVM or back-propagation NN and also able to handle some problems of heartbeat classification: unbalance class, inconsistency between feature extraction and classification and detecting unknown beat on testing phase.
Author Basaruddin, T.
Imah, E. M.
Jatmiko, W.
Author_xml – sequence: 1
  givenname: E. M.
  surname: Imah
  fullname: Imah, E. M.
  email: elly.matul@gmail.com
  organization: Math. Dept., Univ. Negeri Surabaya, Surabaya, Indonesia
– sequence: 2
  givenname: W.
  surname: Jatmiko
  fullname: Jatmiko, W.
  email: wisnuj@cs.ui.ac.id
  organization: Fac. of Comput. Sci., Univ. Indonesia, Depok, Indonesia
– sequence: 3
  givenname: T.
  surname: Basaruddin
  fullname: Basaruddin, T.
  organization: Fac. of Comput. Sci., Univ. Indonesia, Depok, Indonesia
BookMark eNpdkM1OAjEUhWvERFBeQDdd6gJsO79dTiaKJBBDVOKO3Cm3UDN0SKeI8GA-n6Pgxs09ucn5zklOh7RsZZGQK876nDN5N8yfx3lfMC76cZAksRQnpMPDOAl4wsPwlHRlkv79gWyRNmex6Ekh3s5Jp67fGRMs5GmbfGVzWHvzgXS8Kb0pYYeODtCig9LscU5HCM4au6BTVL5ydLIB680evKksvcnGg9F0ckuhpha3FMpF5Yxfrui2udRYjwvXWBtcI_iNQ4qf3oH6pcHOqSqhro026hCom4bMueWuyTBAl025Lxqy_me8JGcayhq7R70grw_3L_ljb_Q0GObZqGd4EvmeThkWAYaQRKngqESRsjSVWoc6Bs6UYApAFoWSLBI8BBkr1FJGwY-qBIMLcn3INYg4WzuzArebHTcPvgG68nuS
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICSMC.2012.6377692
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISBN 1467317144
9781467317122
9781467317146
1467317128
EndPage 155
ExternalDocumentID 6377692
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-f80eb3e4a75821ec2b80889ff4f6a10c20caa9bbc905214a96cef99536cefc7e3
IEDL.DBID RIE
ISBN 9781467317139
1467317136
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316869200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1062-922X
IngestDate Wed Aug 27 03:40:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-f80eb3e4a75821ec2b80889ff4f6a10c20caa9bbc905214a96cef99536cefc7e3
PageCount 6
ParticipantIDs ieee_primary_6377692
PublicationCentury 2000
PublicationDate 2012-Oct.
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-Oct.
PublicationDecade 2010
PublicationTitle 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
PublicationTitleAbbrev ICSMC
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020418
ssj0001107051
Score 1.8801376
Snippet Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer...
SourceID ieee
SourceType Publisher
StartPage 150
SubjectTerms Accuracy
AMGLVQ
arrhythmia
back-propagation
Classification algorithms
ECG
Electrocardiography
Feature extraction
Heart beat
Support vector machines
SVM
Testing
Title Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) as new algorithm with integrating feature extraction and classification for Arrhythmia heartbeats classification
URI https://ieeexplore.ieee.org/document/6377692
WOSCitedRecordID wos000316869200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKxQEu0AeivDQHDq1E2qyTddbH1YoCEq1aAdXeqvFk3EYqu1U2W6n8MH4fHsfbAuLCyXnZjjSJ5-H5vlHqbUGcMw_LzBclBQfFFRmW5DL2eVFTKZTjGItNVMfHo-nUnqypd3dYGGaOyWe8L4dxL7-e01JCZQemqCpjw4L7ILQ9Vus-nhL8mEg1lZytvBz0MDijM6v1NIK6TBXU5aAwK66ndG5XaJrcHnyafDmaSMqX3k_T_VF3Jaqdwyf_98JP1fY9fg9O7jTThlrj2aZ6_Bv14KbaSD_1AnYT8_Telvo5rvFa1j-IuNwrDPY4pNvND64hsbFewFkM9sPpMggmITlhd3z04fPZ6R7gAoKxDnh1MW-b7vI7SLAXVsQU0t1z5BOFoBnaHlkBOKuBxJSX3KV-wGBPw7htL2_DGA2C1N7uXOi5-OvBbfXt8P3XyccsFXbImmCtdJkf5cGH5xIrgekyaTeSbCvvS29wkJPOCdE6R1agxSVaQ-ytbDSHliounqn12XzGzxWQJjLeMA59ME6LoatR41Bcfm0dOtpRWyKW8-ueu-M8SeTFvy-_VI9E8n2y3iu13rVLfq0e0k3XLNo38YP7BX5M1cc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaqggS90BeiQGEOHFqJbTfejTc-RhGlFUnUilLlFo2943alklSbDRL8MH4fHq_TAuLCaZ-2Vxqv5-H5vhHiXWYpJermicty6x0UkyWYW5OQS7PS5kw5jqHYRDEe9yYTfb4m3t9jYYgoJJ_REZ-GvfxybpccKjtWWVEo7RfcR1w5K6K1HiIq3pMJZFPR3UrzTguEUzLRUk4CrEsVXmF2MrVie4rXeoWnSfXx2eDzaMBJX_IoDvhH5ZWgeE6e_d8nb4rdBwQfnN_rpi2xRrNtsfEb-eC22Iq_9QIOIvf04Y742S_xjldACMjcW_QWOcTH1Q8qIfKxXsNVCPfDxdKLJmI54aA_-ji8ujgEXIA31wFvr-d11dx8BQ73woqagps7Coyi4HVD3WIrAGclWDbmOXup7dBb1NCv65vvvo8KgatvN8a3XPz14q74cvLhcnCaxNIOSeXtlSZxvdR78ZRjwUBdstL0ON_Kudwp7KRWphZRG2M1g4tz1MqS07zV7I-2oOy5WJ_NZ_RCgJXWKqcIu86bp1nXlCixy06_1AaN3RM7LJbpXcveMY0Sefnv22_Fk9PL0XA6PBt_eiWe8ixoU_dei_WmXtK-eGy_NdWifhMm3y_H79kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics+%28SMC%29&rft.atitle=Adaptive+Multilayer+Generalized+Learning+Vector+Quantization+%28AMGLVQ%29+as+new+algorithm+with+integrating+feature+extraction+and+classification+for+Arrhythmia+heartbeats+classification&rft.au=Imah%2C+E.+M.&rft.au=Jatmiko%2C+W.&rft.au=Basaruddin%2C+T.&rft.date=2012-10-01&rft.pub=IEEE&rft.isbn=9781467317139&rft.issn=1062-922X&rft.spage=150&rft.epage=155&rft_id=info:doi/10.1109%2FICSMC.2012.6377692&rft.externalDocID=6377692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-922X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-922X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-922X&client=summon