Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) as new algorithm with integrating feature extraction and classification for Arrhythmia heartbeats classification
Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) that integrated feature extraction and classification for the automatic classification of heartbeat...
Gespeichert in:
| Veröffentlicht in: | 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) S. 150 - 155 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.10.2012
|
| Schlagworte: | |
| ISBN: | 9781467317139, 1467317136 |
| ISSN: | 1062-922X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) that integrated feature extraction and classification for the automatic classification of heartbeats in an ECG signal. Since this task has specific characteristics such as, inconsistency optimization on feature extraction and classification, unclassifiable beats and a strong class unbalance, so in this study we proposed new algorithm to handle the problems. The algorithm will be evaluated on real ECG signals from the MIT arrhythmia database. The Experiments show that the proposed method can improve the accuracy of classification better than SVM or back-propagation NN and also able to handle some problems of heartbeat classification: unbalance class, inconsistency between feature extraction and classification and detecting unknown beat on testing phase. |
|---|---|
| AbstractList | Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) that integrated feature extraction and classification for the automatic classification of heartbeats in an ECG signal. Since this task has specific characteristics such as, inconsistency optimization on feature extraction and classification, unclassifiable beats and a strong class unbalance, so in this study we proposed new algorithm to handle the problems. The algorithm will be evaluated on real ECG signals from the MIT arrhythmia database. The Experiments show that the proposed method can improve the accuracy of classification better than SVM or back-propagation NN and also able to handle some problems of heartbeat classification: unbalance class, inconsistency between feature extraction and classification and detecting unknown beat on testing phase. |
| Author | Basaruddin, T. Imah, E. M. Jatmiko, W. |
| Author_xml | – sequence: 1 givenname: E. M. surname: Imah fullname: Imah, E. M. email: elly.matul@gmail.com organization: Math. Dept., Univ. Negeri Surabaya, Surabaya, Indonesia – sequence: 2 givenname: W. surname: Jatmiko fullname: Jatmiko, W. email: wisnuj@cs.ui.ac.id organization: Fac. of Comput. Sci., Univ. Indonesia, Depok, Indonesia – sequence: 3 givenname: T. surname: Basaruddin fullname: Basaruddin, T. organization: Fac. of Comput. Sci., Univ. Indonesia, Depok, Indonesia |
| BookMark | eNpdkM1OAjEUhWvERFBeQDdd6gJsO79dTiaKJBBDVOKO3Cm3UDN0SKeI8GA-n6Pgxs09ucn5zklOh7RsZZGQK876nDN5N8yfx3lfMC76cZAksRQnpMPDOAl4wsPwlHRlkv79gWyRNmex6Ekh3s5Jp67fGRMs5GmbfGVzWHvzgXS8Kb0pYYeODtCig9LscU5HCM4au6BTVL5ydLIB680evKksvcnGg9F0ckuhpha3FMpF5Yxfrui2udRYjwvXWBtcI_iNQ4qf3oH6pcHOqSqhro026hCom4bMueWuyTBAl025Lxqy_me8JGcayhq7R70grw_3L_ljb_Q0GObZqGd4EvmeThkWAYaQRKngqESRsjSVWoc6Bs6UYApAFoWSLBI8BBkr1FJGwY-qBIMLcn3INYg4WzuzArebHTcPvgG68nuS |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICSMC.2012.6377692 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISBN | 1467317144 9781467317122 9781467317146 1467317128 |
| EndPage | 155 |
| ExternalDocumentID | 6377692 |
| Genre | orig-research |
| GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i175t-f80eb3e4a75821ec2b80889ff4f6a10c20caa9bbc905214a96cef99536cefc7e3 |
| IEDL.DBID | RIE |
| ISBN | 9781467317139 1467317136 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316869200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1062-922X |
| IngestDate | Wed Aug 27 03:40:14 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-f80eb3e4a75821ec2b80889ff4f6a10c20caa9bbc905214a96cef99536cefc7e3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6377692 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-Oct. |
| PublicationDateYYYYMMDD | 2012-10-01 |
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-Oct. |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) |
| PublicationTitleAbbrev | ICSMC |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020418 ssj0001107051 |
| Score | 1.8801376 |
| Snippet | Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 150 |
| SubjectTerms | Accuracy AMGLVQ arrhythmia back-propagation Classification algorithms ECG Electrocardiography Feature extraction Heart beat Support vector machines SVM Testing |
| Title | Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) as new algorithm with integrating feature extraction and classification for Arrhythmia heartbeats classification |
| URI | https://ieeexplore.ieee.org/document/6377692 |
| WOSCitedRecordID | wos000316869200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKxQEu0AeivDQHDq1E2qyTddbH1YoCEq1aAdXeqvFk3EYqu1U2W6n8MH4fHsfbAuLCyXnZjjSJ5-H5vlHqbUGcMw_LzBclBQfFFRmW5DL2eVFTKZTjGItNVMfHo-nUnqypd3dYGGaOyWe8L4dxL7-e01JCZQemqCpjw4L7ILQ9Vus-nhL8mEg1lZytvBz0MDijM6v1NIK6TBXU5aAwK66ndG5XaJrcHnyafDmaSMqX3k_T_VF3Jaqdwyf_98JP1fY9fg9O7jTThlrj2aZ6_Bv14KbaSD_1AnYT8_Telvo5rvFa1j-IuNwrDPY4pNvND64hsbFewFkM9sPpMggmITlhd3z04fPZ6R7gAoKxDnh1MW-b7vI7SLAXVsQU0t1z5BOFoBnaHlkBOKuBxJSX3KV-wGBPw7htL2_DGA2C1N7uXOi5-OvBbfXt8P3XyccsFXbImmCtdJkf5cGH5xIrgekyaTeSbCvvS29wkJPOCdE6R1agxSVaQ-ytbDSHliounqn12XzGzxWQJjLeMA59ME6LoatR41Bcfm0dOtpRWyKW8-ueu-M8SeTFvy-_VI9E8n2y3iu13rVLfq0e0k3XLNo38YP7BX5M1cc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaqggS90BeiQGEOHFqJbTfejTc-RhGlFUnUilLlFo2943alklSbDRL8MH4fHq_TAuLCaZ-2Vxqv5-H5vhHiXWYpJermicty6x0UkyWYW5OQS7PS5kw5jqHYRDEe9yYTfb4m3t9jYYgoJJ_REZ-GvfxybpccKjtWWVEo7RfcR1w5K6K1HiIq3pMJZFPR3UrzTguEUzLRUk4CrEsVXmF2MrVie4rXeoWnSfXx2eDzaMBJX_IoDvhH5ZWgeE6e_d8nb4rdBwQfnN_rpi2xRrNtsfEb-eC22Iq_9QIOIvf04Y742S_xjldACMjcW_QWOcTH1Q8qIfKxXsNVCPfDxdKLJmI54aA_-ji8ujgEXIA31wFvr-d11dx8BQ73woqagps7Coyi4HVD3WIrAGclWDbmOXup7dBb1NCv65vvvo8KgatvN8a3XPz14q74cvLhcnCaxNIOSeXtlSZxvdR78ZRjwUBdstL0ON_Kudwp7KRWphZRG2M1g4tz1MqS07zV7I-2oOy5WJ_NZ_RCgJXWKqcIu86bp1nXlCixy06_1AaN3RM7LJbpXcveMY0Sefnv22_Fk9PL0XA6PBt_eiWe8ixoU_dei_WmXtK-eGy_NdWifhMm3y_H79kQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics+%28SMC%29&rft.atitle=Adaptive+Multilayer+Generalized+Learning+Vector+Quantization+%28AMGLVQ%29+as+new+algorithm+with+integrating+feature+extraction+and+classification+for+Arrhythmia+heartbeats+classification&rft.au=Imah%2C+E.+M.&rft.au=Jatmiko%2C+W.&rft.au=Basaruddin%2C+T.&rft.date=2012-10-01&rft.pub=IEEE&rft.isbn=9781467317139&rft.issn=1062-922X&rft.spage=150&rft.epage=155&rft_id=info:doi/10.1109%2FICSMC.2012.6377692&rft.externalDocID=6377692 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-922X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-922X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-922X&client=summon |

