Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) as new algorithm with integrating feature extraction and classification for Arrhythmia heartbeats classification

Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) that integrated feature extraction and classification for the automatic classification of heartbeat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) s. 150 - 155
Hlavní autoři: Imah, E. M., Jatmiko, W., Basaruddin, T.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2012
Témata:
ISBN:9781467317139, 1467317136
ISSN:1062-922X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Electrocardiogram (ECG) plays an important role in monitoring and preventing heart attacks. In this paper, we propose a new method Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ) that integrated feature extraction and classification for the automatic classification of heartbeats in an ECG signal. Since this task has specific characteristics such as, inconsistency optimization on feature extraction and classification, unclassifiable beats and a strong class unbalance, so in this study we proposed new algorithm to handle the problems. The algorithm will be evaluated on real ECG signals from the MIT arrhythmia database. The Experiments show that the proposed method can improve the accuracy of classification better than SVM or back-propagation NN and also able to handle some problems of heartbeat classification: unbalance class, inconsistency between feature extraction and classification and detecting unknown beat on testing phase.
ISBN:9781467317139
1467317136
ISSN:1062-922X
DOI:10.1109/ICSMC.2012.6377692