Asynchronous Evolutionary Multi-Objective Algorithms with heterogeneous evaluation costs

Master-slave parallelization of Evolutionary Algorithms (EAs) is straightforward, by distributing all fitness computations to slaves. The benefits of asynchronous steady state approaches are well-known when facing a possible heterogeneity among the evaluation costs in term of runtime, be they due to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 IEEE Congress of Evolutionary Computation (CEC) s. 21 - 28
Hlavní autoři: Yagoubi, Mouadh, Thobois, Ludovic, Schoenauer, Marc
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2011
Témata:
ISBN:1424478340, 9781424478347
ISSN:1089-778X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Master-slave parallelization of Evolutionary Algorithms (EAs) is straightforward, by distributing all fitness computations to slaves. The benefits of asynchronous steady state approaches are well-known when facing a possible heterogeneity among the evaluation costs in term of runtime, be they due to heterogeneous hardware or non-linear numerical simulations. However, when this heterogeneity depends on some characteristics of the individuals being evaluated, the search might be biased, and some regions of the search space poorly explored. Motivated by a real-world case study of multi-objective optimization problem the optimization of the combustion in a Diesel Engine the consequences of different components of heterogeneity in the evaluation costs on the convergence of two Evolutionary Multi-objective Optimization Algorithms are investigated on artificially-heterogeneous benchmark problems. In some cases, better spread of the population on the Pareto front seem to result from the interplay between the heterogeneity at hand and the evolutionary search.
ISBN:1424478340
9781424478347
ISSN:1089-778X
DOI:10.1109/CEC.2011.5949593