Fuzzy clustering of multi-view relational data with pairwise constraints
Thvs paper presents SS-MVFCVSMdd, a semi-supervised multiview fuzzy clustering algorithm for relational data described by multiple dissimilarity matrices. SS-MVFCVSMdd provides a fuzzy partition in a predetermined number of fuzzy clusters, a representative for each fuzzy cluster, learns a relevance...
Gespeichert in:
| Veröffentlicht in: | IEEE International Fuzzy Systems conference proceedings S. 1 - 6 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.07.2017
|
| Schlagworte: | |
| ISSN: | 1558-4739 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Thvs paper presents SS-MVFCVSMdd, a semi-supervised multiview fuzzy clustering algorithm for relational data described by multiple dissimilarity matrices. SS-MVFCVSMdd provides a fuzzy partition in a predetermined number of fuzzy clusters, a representative for each fuzzy cluster, learns a relevance weight for each dissimilarity matrix, and takes into account pairwise constraints must-link and cannot-link, by optimizing a suitable objective function. Experiments with multiview real-valued data sets described by multiple dissimilarity matrices show the usefulness of the proposed algorithm. |
|---|---|
| ISSN: | 1558-4739 |
| DOI: | 10.1109/FUZZ-IEEE.2017.8015529 |