Application of an improved particle filter for state estimation

A novel Gaussian mixture sigma-point particle filter algorithm is proposed to mitigate the sample depletion problem. The posterior state density is represented by a Gaussian mixture model that is recovered from the weighted particle set of the measurement update step by means of a weighted expectati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese Control Conference S. 489 - 493
Hauptverfasser: Xiang Li, Liu Yu, Su Baoku
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2008
Schlagworte:
ISSN:1934-1768
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel Gaussian mixture sigma-point particle filter algorithm is proposed to mitigate the sample depletion problem. The posterior state density is represented by a Gaussian mixture model that is recovered from the weighted particle set of the measurement update step by means of a weighted expectation-maximization algorithm. The simulation results demonstrate the validity of the proposed algorithm.
ISSN:1934-1768
DOI:10.1109/CHICC.2008.4604962