Application of an improved particle filter for state estimation
A novel Gaussian mixture sigma-point particle filter algorithm is proposed to mitigate the sample depletion problem. The posterior state density is represented by a Gaussian mixture model that is recovered from the weighted particle set of the measurement update step by means of a weighted expectati...
Gespeichert in:
| Veröffentlicht in: | Chinese Control Conference S. 489 - 493 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.07.2008
|
| Schlagworte: | |
| ISSN: | 1934-1768 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A novel Gaussian mixture sigma-point particle filter algorithm is proposed to mitigate the sample depletion problem. The posterior state density is represented by a Gaussian mixture model that is recovered from the weighted particle set of the measurement update step by means of a weighted expectation-maximization algorithm. The simulation results demonstrate the validity of the proposed algorithm. |
|---|---|
| ISSN: | 1934-1768 |
| DOI: | 10.1109/CHICC.2008.4604962 |