Adaptive Visual Target Tracking Based on Label Consistent K-Svd Sparse Coding and Kernel Particle Filter
We propose an adaptive visual target tracking algorithm based on Label-Consistent K -Singular Value Decomposition (LC-KSVD) dictionary learning. To construct target templates, local patch features are sampled from foreground and background of the target. LC-KSVD then is applied to these local patche...
Uloženo v:
| Vydáno v: | 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 1633 - 1637 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.04.2018
|
| Témata: | |
| ISSN: | 2379-190X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose an adaptive visual target tracking algorithm based on Label-Consistent K -Singular Value Decomposition (LC-KSVD) dictionary learning. To construct target templates, local patch features are sampled from foreground and background of the target. LC-KSVD then is applied to these local patches to simultaneously estimate a set of low-dimension dictionary and classification parameters (CP). To track the target over time, a kernel particle filter (KPF) is proposed that integrates both local and global motion information of the target. An adaptive template updating scheme is also developed to improve the robustness of the tracker. Experimental results demonstrate superior performance of the proposed algorithm over state-of-art visual target tracking algorithms in scenarios that include occlusion, background clutter, illumination change, target rotation and scale changes. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP.2018.8462675 |